
draft.md 2025-07-13

 1 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

AI Era Essentials: A Plain-English Guide to Language
Models & Grounded Intelligence

A guide by Kevin Tupper

Chief Architect - AI Transformation, Microsoft Federal

Empowered by generative AI

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 2 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Table of Contents

Introduction

�. Intro to the Guide

�. Why AI? Why Now?

Part I – Language Models in Plain English

�. What Is a Language Model?

�. Tokens: The Building Blocks of Text

�. How Does a Language Model Learn?

�. Prediction vs. Memory: How Apps Bridge the Gap

�. Context Windows & Conversations

�. Prediction Isnʼt Knowledge

�. Does Size Matter? Parameter Count & Capability

��. Large vs. Small Language Models

��. Fine-Tuning in Plain English

��. Reasoning vs. Pattern-Matching Models

��. Prompt Craft — Getting Better Answers

��. Guardrails & Bias — Alignment, Safety Filters

��. Limits & Whatʼs Next

Part II – Grounded Intelligence: Turning Prediction into Knowledge

��. Words vs. Knowledge — Why LMs Need Grounding

��. In-Context Learning: Zero-, One-, Few-Shot Prompts

��. Grounding Basics — Feeding the Model Trusted Facts

��. RAG in Plain English

��. Retrieval Methods at a Glance

��. When Retrieval Goes Wrong — Data Quality & Verification

��. Privacy & Security Boundaries

��. Limits & Costs of Grounding

��. What Grounding Enables Next

Closing Thoughts

��. Series Summary & Next Steps

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 3 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Introduction

Chapter 1 — Intro to the Guide

AI Era Essentials: A Plain-English Guide to Language Models & Grounded Intelligence is a guide by Kevin

Tupper with help from generative AI. It gives public-sector professionals a fast, trustworthy grounding in

today's AI landscape without jargon. Understanding how language models behave lets readers steer them more

effectively and responsibly.

The paper contains 25 self-contained chapters, each designed to be read in less than five minutes and

arranged in two parts:

�. Language Models in Plain English — explains how large language models generate text, why they

sometimes hallucinate, how size and fine-tuning shape behavior, and practical prompting tips for Copilot

and other AI assistants.

�. Grounded Intelligence: Turning Prediction into Knowledge — explains how agencies ground model

output with in-context examples, Retrieval-Augmented Generation (RAG), and document grounding. It

also flags retrieval pitfalls, privacy boundaries, and the emerging role of grounded AI agents in day-to-

day government work.

Each chapter ends with:

Key Takeaways

A summary of the most important points designed to reinforce the key insights from the chapter and

provide a quick reference for readers.

Links for Further Reading

A curated list of public resources for readers who want to explore the topics discussed in more depth.

Written in clear, accessible language, AI Era Essentials equips everyone in government — from senior

administrators to frontline staff — to verify, govern, and apply AI confidently. It also lays the foundation for

upcoming PubSec.ai guides on Copilot orchestration, governance, and advanced prompting.

Connect with Kevin on LinkedIn or subscribe to the PubSec.ai YouTube channel to be notified when we

release video walkthroughs of each chapter and more AI insights.

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.linkedin.com/in/kevin-tupper/
https://www.youtube.com/@pubsecai?sub_confirmation=1

draft.md 2025-07-13

 4 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 2 — Why AI? Why Now?

It wonʼt be long before collaborating with AI feels as routine as using electricity — always on, barely noticed

until it stops. Iʼve spent eight years helping federal agencies understand and adopt Microsoft data-and-AI

solutions; for the last three Iʼve immersed myself in generative AI every single day — both professionally and

personally. The verdict is simple: Kevin with AI is better than Kevin without AI.

What do I mean by better?

At its core, “better ” has two dimensions:

More efficient — routine knowledge work  — research, drafting, and synthesis  — finishes in a fraction of the

time, freeing hours for higher-value analysis and decision-making.

More effective — AI lifts quality as well as speed: it refines language, suggests clearer structure, and

scaffolds code or analysis that would have taken hours  — or been out of reach — on my own. The net

result is sharper writing, stronger solutions, and deeper insight in less time.

In short, AI doesnʼt just help me move faster; it lets me achieve results I could not reach on my own. And I'm not

alone: colleagues and peers report similar gains.

Evidence from the field

Large-scale pilots echo my personal experience:

UK cross-government Microsoft  365 Copilot pilot — 20,000 civil servants saved 26 minutes per day

and cut search time by 70 percent.

Pennsylvania ChatGPT pilot — 175 Commonwealth staff sped case reviews and citizen correspondence

while boosting satisfaction scores.

Microsoft Work Trend Index  2024 — 75 percent of 31,000 surveyed knowledge workers adopted

generative AI within six months to manage workload.

Work Trend Index  2025 — early adopters now called “frontier firms,” projected to widen the productivity

gap.

Stanford AI Index  2024 — meta-analysis found statistically significant accuracy gains and narrower

junior-senior skill gaps.

McKinsey State  of  AI 2023 — one-third of 1,684 organizations already deploy generative AI in at least one

business process.

Taken together, these studies show AI boosts both speed and quality across diverse roles.

Policy momentum removes excuses

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 5 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Adoption is not just a grassroots trend; it is now a policy imperative.

OMB Memo M-25-21 directs every federal agency to “accelerate the responsible use of AI,” elevate

workforce literacy, and report progress annually.

The 2025 Executive Order on Removing Barriers to American Leadership in AI instructs agencies to

streamline procurement and sandbox approvals so staff can experiment safely with low-risk AI helpers.

Why this matters right now

The compounded effect of small, daily gains is enormous. If AI saves a single analyst 30 minutes per day, that

equates to more than three weeks of labor per employee each year. Scaled across tens of thousands of public

servants, AI recovers millions of labor hours that can be redirected to high-impact policy and oversight work.

Equally important, the quality dividend reduces rework and error correction — often the hidden sinkholes of

government schedules and budgets. Any role that involves reading, analyzing, learning from, or responding to

information gains an edge from an AI partner; those who wait risk falling behind colleagues who upskill now.

The future of work is collaborative — humans plus AI. The time to master that partnership is today, and the next

chapter explains the first building block: what a language model actually is.

Key Takeaways

AI provides measurable efficiency and effectiveness improvements.

Large-scale pilots have validated these gains.

Federal policy reinforces the importance of adopting AI.

Mastering AI enables public-sector professionals to:

Work faster.

Produce higher-quality results.

Stay relevant in an increasingly digital government.

Links for Further Reading

Microsoft  365 Copilot Cross-Government Trial Findings

Lessons from Pennsylvaniaʼs Generative AI Pilot with ChatGPT

AI at Work Is Here. Now Comes the Hard Part

2025: The Year the Frontier Firm Is Born

AI Index  2024 Report

The State of AI in 2023

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.gov.uk/government/publications/microsoft-365-copilot-experiment-cross-government-findings-report/microsoft-365-copilot-experiment-cross-government-findings-report-html
https://www.pa.gov/content/dam/copapwp-pagov/en/oa/documents/programs/information-technology/documents/openai-pilot-report-2025.pdf
https://www.microsoft.com/en-us/worklab/work-trend-index/ai-at-work-is-here-now-comes-the-hard-part
https://www.microsoft.com/en-us/worklab/work-trend-index/2025-the-year-the-frontier-firm-is-born
https://hai.stanford.edu/ai-index/2024-ai-index-report
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year

draft.md 2025-07-13

 6 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

M-25-21: Accelerating Federal Use of AI

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.whitehouse.gov/wp-content/uploads/2025/02/M-25-21-Accelerating-Federal-Use-of-AI-through-Innovation-Governance-and-Public-Trust.pdf

draft.md 2025-07-13

 7 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Part I – Language Models in Plain English

Chapter 3 — What Is a Language Model?

A language model is not a search engine or a rules database — it is a probability engine that guesses the next

word in a passage by learning from billions of sentences. That single objective explains both its fluent prose

and its occasional stumbles. Understanding this is the first step toward steering generative AI responsibly.

A plain-English definition

A language model (LM) is an AI model trained to predict the next word (technically called a token) in a

sequence of text. For our purposes weʼll simply call them words; the next chapter unpacks tokens in detail. The

model reads a prompt, estimates how likely each word is to come next, and then selects one. Developers can

adjust a randomness setting: keep it low and the model almost always returns the most likely word; turn it up

and it may choose among several close contenders, adding useful variety.

One-sentence definition

A language model generates text by guessing the next word based on everything it has read so far.

Micro-example: “We the … ”

Prompt Top 3 guesses Probability

“The Constitution begins with We the” People 91 %

nation 3 %

citizens 2 %

The model doesnʼt look anything up; it picks People because that continuation dominated its training data

(these probabilities are illustrative.) Each prediction happens in milliseconds, then the model repeats the

process, word after word, so the reply streams out almost instantly.

In practice, very few of us ever send prompts directly to a language model. We use applications like Microsoft

365 Copilot to handle that for us: they gather any helpful context (like the document youʼre editing or the prior

turns in a chat), manage the back-and-forth conversation, and add safety checks before showing the modelʼs

response.

Why “next-word” is enough

Surprisingly, next-word prediction alone enables a wide range of sophisticated capabilities:

Translation — By predicting the next word in a different language, models can translate sentences like

“How are you?” into “Comment ça va?” in French, capturing nuances of grammar and meaning.

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 8 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Summarization — Models can distill lengthy documents into concise summaries by predicting the

shortest coherent continuation that captures the main ideas, saving time for readers.

Code generation — By recognizing patterns in programming languages, models can generate new code

snippets, refactor existing code, or even suggest bug fixes, making them invaluable for developers.

Question answering — By predicting the most relevant response to a user ʼs query, models can often

provide accurate answers based on their training data, even if they donʼt “know” the answer in a human

sense.

As models are trained on larger datasets, their next-word predictions improve and new capabilities emerge.

More data and more training compute translate into better guesses — and therefore more useful outputs.

Limits & misconceptions

We will dive a bit deeper into these ideas in later chapters, but for now here is what you should remember:

Not a database — The model strings together plausible words; it cannot guarantee factual accuracy.

**Stateless — After it responds, your prompt is forgotten; memory lives in the chat application, not the

model.

Limited Word budget — Every chat has a finite context window; extra text is clipped, causing lost details.

Plausible-sounding errors — The modelʼs goal is to produce fluent, human-like text, so replies almost

always sound reasonable and are often — but not always — accurate. Supplying authoritative information

or verifying the output afterward is the only way to ensure accuracy.

Why public-sector staff should care

Understanding where a language model already excels can spark ideas for quick wins in government

workflows. The examples below show how agencies are turning next-word prediction into practical mission

support:

Drafting & summarizing — Generate policy briefs or condense lengthy reports in minutes, then verify.

Translation & accessibility — Lower language barriers for FOIA releases or disaster-relief materials.

Legislative exploration — Some municipalities have used LMs to draft first-pass ordinance language that

attorneys then refine.

Chapter  4 dives into what a “token” really is; Chapter  7 will return to context windows and how they limit the text

a model can handle.

Key Takeaways

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 9 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Language models predict the next word. They generate text by estimating the most likely continuation

based on prior input.

Next-word prediction powers diverse capabilities. From translation and summarization to code

generation and question answering, this simple mechanism enables a wide range of applications.

They are not databases. Language models create plausible-sounding text but cannot guarantee factual

accuracy or recall specific information.

Stateless by design. Once a response is generated, the model forgets the prompt; memory is managed

by the application, not the model.

Context windows are finite. Models can only process a limited number of tokens at a time, so long

inputs may result in clipped or lost details.

Fluency doesnʼt equal accuracy. While responses often sound convincing, they require verification to

ensure correctness.

Practical uses in the public sector. Language models can streamline drafting, summarization,

translation, and legislative exploration, saving time and improving accessibility.

Links for Further Reading

Lifewire — What Is a Large Language Model?

Medium — A Very Gentle Introduction to Large Language Models (Without the Hype)

The Verge — AI Is Confusing — Hereʼs Your Cheat Sheet

Microsfot - What are large language models (LLMs)?

NYU Libraries — What Large Language Models Are

KDnuggets — Large Language Models: A Beginnerʼs Guide for 2025

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.lifewire.com/large-language-model-7724669
https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e
https://www.theverge.com/24201441/ai-terminology-explained-humans
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-are-large-language-models-llms
https://guides.nyu.edu/c.php?g=1308742&p=9997824
https://www.kdnuggets.com/large-language-models-beginners-guide-2025

draft.md 2025-07-13

 10 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 4 — Tokens: The Building Blocks of Text

A language model doesnʼt see whole words the way we do. Before it can reason, it slices every sentence into

tokens — small chunks that might be

a complete short word,

part of a longer word (a prefix, root, or ending),

a space, or

a punctuation mark.

For example, the sentence “Kevin Tupper likes working with generative AI.” is tokenized as follows:

["Kevin", " T", "upper", " likes", " working", " with", " gener", "ative", "AI", "."]

One-sentence definition

A token is the smallest chunk of text a language model can read or write.

Why tokens instead of words?

Approach What goes wrong

Whole-word

vocabulary

• Millions of unique words, plus slang and typos, would bloat the model.

• Any brand-new word becomes a total mystery.

Single characters

• Sentences become 5–10 × longer, slowing training and eating up the modelʼs

limited attention span.

• Letters carry very little meaning by themselves.

Sub-word tokens

(sweet spot)

• A few tens of thousands of common chunks keep the vocabulary compact.

• New or misspelled words can be rebuilt from familiar pieces.

• Sequences stay short enough for fast, accurate reasoning.

Tokens hit the balance: they are small enough to combine into any word — old, new, or misspelled — yet big

enough to keep the text stream manageable. Every model also has a fixed context window (its attention span)

measured in tokens. Early GPT-3 models handled about 2,048 tokens (≈1,500 words); todayʼs most

sophisticated models can support up to a million tokens — enough for entire novels. Anything beyond that limit

is ignored or trimmed, so understanding tokens helps you craft prompts that fit inside the modelʼs mental

workspace.

Practical implications

For everyday users, understanding tokens helps explain why tools like ChatGPT have limits on input size and

why they sometimes “forget” information in long conversations. If you give the AI a very long prompt or ask

many questions in a row, you might hit the token limit. The chat software will then drop older parts of the

conversation to make room for new text (weʼll explore this in Chapter  7). Itʼs also why AI assistants might

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 11 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

summarize or shorten information – to stay within the token budget. When preparing a prompt, especially in

government settings with lengthy documents, being mindful of tokens means ensuring you provide just the

necessary text. In practice, you donʼt need to count tokens by hand, but knowing that a modelʼs understanding

is confined to a certain window of tokens is key to using it effectively.

Key Takeaways

Tokens are Lego-like word pieces. Every sentence is chopped into spaces, roots, suffixes, and

punctuation that the model can recombine into any word.

Token budget = model attention span. A model can only “see” a fixed number of tokens at once; anything

beyond that limit is silently dropped.

Sub-word tokens hit the sweet spot. They keep the vocabulary small yet still cover typos, slang, and new

terms.

Prompt design is token design. Trim fluff and summarize long passages so the important parts fit inside

the window.

Links for Further Reading

OpenAI Help Center  — What are tokens and how to count them?

MLQ.ai — Understanding Tokens & Context Windows

NVIDIA Blog  — Explaining Tokens — the Language and Currency of AI

IBM — What is a context window?

AI Explained (Medium)  — What Are Tokens? Why LLMs See Words as Lego Bricks

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them
https://blog.mlq.ai/tokens-context-window-llms/
https://blogs.nvidia.com/blog/ai-tokens-explained/
https://www.ibm.com/think/topics/context-window
https://ai.plainenglish.io/what-are-tokens-why-llms-see-words-as-lego-bricks-b1d0de30ddf6

draft.md 2025-07-13

 12 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 5 — How Does a Language Model Learn?

Unlike traditional software that is coded with explicit rules, a language model learns by example. During

training, the model reads billions of sentences and tries to guess the next word in each one. Whenever it

guesses wrong, the training algorithm adjusts the modelʼs internal weights — think of these as thousands of

dial settings inside the network — to make that guess more likely to be correct next time. In essence, the model

gradually tunes itself to predict text more accurately, a process repeated trillions of times over the entire

training set.

From massive text to patterns

The training data for large language models is enormous. Many models are initially pre-trained on vast swaths

of the internet: Wikipedia articles, books, websites, and more. For example, OpenAIʼs GPT-3 was trained on

about 500 billion tokens of text, including a filtered 410 billion-token slice of the public web. Thatʼs roughly

equivalent to reading millions of books cover to cover. This huge volume is necessary so the model encounters

all sorts of grammar, facts, and writing styles. As it reads, the model develops a statistical sense of language —

it picks up that “Washington, D.C.” often follows “capital of the United States” or that “once upon a” is usually

followed by “time.” Over many rounds of adjusting weights, patterns emerge: the model starts to “know”

common sequences and the structure of different topics.

Itʼs important to note that the model isnʼt memorizing exact documents; itʼs learning patterns that apply

broadly. For instance, after enough examples, the model figures out that a sentence like “The cat caught a ___”

likely ends with “mouse” because that often appeared in its training data. The more text and variety it trains on,

the better it gets at filling in the blanks in a human-like way. In technical terms, the training is self-supervised —

the correct answers (the next words) come from the texts themselves, not from a human teacher. This allows

learning at an internet scale without manually labeling data.

Pre-training vs. fine-tuning

Pre-training (the initial learning phase) teaches the model general language skills. After pre-training, an LLM

can already produce coherent text and answer questions in a basic way. However, it may not follow instructions

or handle specialized tasks perfectly out of the box. Thatʼs where fine-tuning comes in. Fine-tuning means

taking the pre-trained model and training it a bit more on a narrower dataset or with specific goals. For

example, a model can be fine-tuned on dialogue data to behave more politely and helpfully in a chat (this is

what OpenAI did to create ChatGPTʼs style). Fine-tuning can also use examples from a certain domain—say,

legal documents — so the model learns that style and vocabulary. In some cases, fine-tuning involves human

feedback: the modelʼs answers are rated by people, and the model is adjusted to prefer answers that humans

marked as good. This technique, called reinforcement learning from human feedback (RLHF), helps align the AI

with what users expect. The result of fine-tuning is often a model thatʼs better at following instructions and

safer or more accurate in a specific context than the raw pre-trained version.

The scale of training

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 13 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Training large language models requires an astonishing amount of computing power. Think of hundreds of

specialized processors (GPUs) crunching numbers for weeks or months. A single training run for a model like

GPT-3 was estimated to cost around $5 million in cloud computing resources. Researchers noted that if you

tried to train GPT-3 on one high-end GPU, it would take over 300 years — obviously, many GPUs run in parallel

to finish in a reasonable time. The model that results from all this work is huge in terms of stored knowledge:

GPT-3 has 175 billion parameters (settings) adjusted during training. Generally, more data and more

parameters have led to better performance, although with diminishing returns. This growth in scale is why

todayʼs models can do things that seemed like science fiction a few years ago — they simply have seen more

text and have more “neurons” tuned to capture nuances. Chapter 9 will explore how size relates to capability in

more detail.

For a public-sector professional, the takeaway is that an AI like this has effectively absorbed a sizeable portion

of written human knowledge up to its cutoff date. It has learned patterns of language, not true understanding in

a human sense, but enough to generate useful and relevant responses in many cases. The next chapter will

clarify a common misconception: just because a model was trained on a lot of text doesnʼt mean it can recall

any piece of it on command—prediction is not the same as perfect memory.

Key Takeaways

It learns by trial and error. The model keeps tweaking itself whenever it guesses a word wrong until its

predictions become reliable.

It studies everything online. It speed-reads books, articles, and websites to absorb grammar, facts,

and writing styles at scale.

It spots patterns, not pages. Like noticing “peanut butter and ___” finishes with “ jelly,” it remembers

broad patterns rather than exact documents.

First it learns the basics, then itʼs polished. Broad pre-training is followed by fine-tuning that teaches

manners or specialist lingo.

Big brains need big computers. Training giants such as GPT-3 costs millions of dollars and weeks of

nonstop super-computing.

Smart but not all-knowing. It drafts useful text yet may misstate facts, so agencies still need to verify

critical information.

Links for Further Reading

Cloudflare — What is an LLM (large language model)?

Understanding AI — Large language models, explained with a minimum of math and jargon

Lambda Labs — OpenAIʼs GPT-3: A Technical Overview

Medium (Mark Riedl) — A Very Gentle Introduction to Large Language Models

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.cloudflare.com/learning/ai/what-is-large-language-model/
https://www.understandingai.org/p/large-language-models-explained-with
https://lambda.ai/blog/demystifying-gpt-3
https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e

draft.md 2025-07-13

 14 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Statista — Charting the AI Boom: Compute Power Used in Training

Wikipedia — GPT-3

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.statista.com/chart/29979/compute-used-to-train-ai-systems/
https://en.wikipedia.org/wiki/GPT-3

draft.md 2025-07-13

 15 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 6 — Prediction vs. Memory: How Apps Bridge the Gap

Itʼs tempting to think that when an AI assistant “remembers” something you said, the underlying language

model must be recalling knowledge the way a person would. In reality the model itself still does not store new

facts or past chats inside its neural network. Each reply is generated on-the-fly from the modelʼs frozen training

patterns plus whatever text you (or the software) include in the prompt.

What has changed is that many products — notably Microsoft 365 Copilot and ChatGPT — now save a small,

user-specific “memory” outside the model and automatically add it to future prompts when relevant. This

external store (sometimes called application-level memory) lets the assistant act as though it remembers

preferences or project details across sessions, even though the model remains stateless.

Stateless model, stateful application

Language models are designed to be stateless: once they finish generating a response, they discard the

conversation. If you opened the raw model directly, each new prompt would start with a blank slate.

Application developers bridge that gap by:

�. Caching conversation history in the chat UI and sending the recent transcript back with every new

prompt (standard chat “context”).

�. Persisting selected facts — for example “Kevin prefers brief answers” — in a separate memory store

tied to your account. On the next chat the app silently prepends those facts to the prompt so the model

sees them.

Everything the assistant appears to “recall” therefore lives in text the application supplies, not in the modelʼs

weights.

Weights versus application memory

Aspect Where it lives Who controls it
Can it change

during a chat?

Training weights

(grammar, general

facts, reasoning

patterns)

Inside the model file

Model owner

during

training/fine-tuning

No

Conversation history

(the running transcript)
Chat application

Application code;

cleared when you

end the session

Only until the context

window overflows

Persistent memory

(preferences, recurring

facts)

Separate data store managed by

the provider (e.g., M365 service,

OpenAI user profile)

Application

provider; user can

usually view/delete

Added to every new

session when

relevant until

removed

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 16 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Because weights stay frozen, the model canʼt truly “ learn” new information mid-conversation. The illusion of

learning comes from the application feeding updated context (conversation + memory) back into the prompt

each turn.

Practical implications for public-sector users

Transparency & governance. Memory lives with the service provider, so agencies must review how

Microsoft 365 Copilot, ChatGPT Enterprise, or any other tool stores and secures that data.

User control. Most providers offer settings to view or erase stored memories—critical for privacy and

compliance.

Prompt planning. If an important detail is neither in the appʼs memory nor the recent transcript, you still

need to restate it; otherwise the model wonʼt “remember.”

No silent model updates. Unless the vendor retrains or fine-tunes the model, its fundamental

knowledge remains fixed at the training cutoff date.

Chapter 7 will explore how context windows and these new memory mechanisms interact—why long chats

sometimes forget earlier turns, and how application memory can fill the gap without altering the model itself.

Key Takeaways

Language models are stateless. They do not retain information from one conversation to the next; each

response is generated based on fixed training data and the current prompt.

Memory is application-driven. Any “memory” of past interactions comes from external application-

level storage, not the model itself.

Weights are immutable during use. The modelʼs training data and reasoning patterns are frozen and

cannot be updated mid-conversation.

User-specific memory is external. Applications like Microsoft 365 Copilot and ChatGPT manage user

preferences or recurring details in separate data stores, which can be viewed or deleted by the user.

Transparency is critical. Public-sector users must evaluate how service providers store and secure

memory data to ensure compliance with privacy and governance standards.

Prompt completeness matters. If a detail is not in the appʼs memory or the recent conversation

context, it must be explicitly restated to be considered by the model.

Links for Further Reading

Pinecone — Conversational Memory for LLMs

DataNorth — Context Length in LLMs and Why Itʼs Important

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.pinecone.io/learn/series/langchain/langchain-conversational-memory/
https://datanorth.ai/blog/context-length

draft.md 2025-07-13

 17 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Microsoft Research — Augmenting Language Models with Persistent Memory

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.microsoft.com/en-us/research/publication/language-models-augmented-with-decoupled-memory/

draft.md 2025-07-13

 18 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 7 — Context Windows & Conversations

Every language model has a limited context window, which is the maximum amount of text (measured in

tokens) it can consider at once. Think of this as the modelʼs attention span or working memory. The context

window includes both the user ʼs prompt and the modelʼs own latest replies or context managed by the

application you are using. For example, if a model has a 4,000-token window (roughly 3,000 words), that total

must cover the conversation history plus your new question and the modelʼs next answer. If you exceed that

limit, something has to give.

What happens when the window fills up

When a conversation or document is longer than the modelʼs context capacity, the AI cannot magically

remember it all. The typical solution is to truncate older text – essentially dropping the earliest messages or

paragraphs that no longer fit. Imagine sliding a window over a long transcript: as it moves forward, the text at

the back slips out of view. In a chat, this means if you have a very lengthy exchange, the model might “forget”

details from the beginning of the conversation unless the application is doing something to keep them in play.

Some advanced chat systems try to cope by summarizing earlier portions of the conversation into a shorter

form and prepending that summary as the history grows. By condensing old dialogue, they free up tokens for

new interactions while still giving the model some sense of what happened before. However, summaries are

imperfect – important nuance can be lost. If nothing is done (no summarization), then once the limit is hit the

oldest content is simply not included in the modelʼs input anymore.

For users, a clear sign of hitting the context limit is when the AI starts to repeat itself or seems to ignore

something you said much earlier. It isnʼt being willfully ignorant; it likely just doesnʼt have that piece of text in its

window anymore. This is also why an AI might suddenly change topic or contradict an earlier statement – the

grounding for the earlier discussion fell out of scope. If you notice this happening, one remedy is to remind the

AI of the missing detail by reintroducing it in your next prompt (essentially, putting it back into the context

window).

Practical limits on documents

Context size isnʼt just about chat length – it also limits how much source material you can feed the model in one

go. If you have a 100-page PDF and a model with a 16k token window (around 12,000 words), you canʼt just

paste the entire text at once because it exceeds the modelʼs capacity. You would have to send it in chunks or

use tools that can search or summarize the document in pieces (techniques discussed in Part II). Modern

models are expanding these limits: some versions of GPT-4 can handle up to 128,000 tokens, and other new

models boast 100k or more. But even these have boundaries – roughly 75,000 words for a 100k context

(maybe half a novel). Thatʼs impressive but still finite. It means AI assistants are currently best at working with

sections of documents rather than an entire library all at once.

Developers are actively exploring ways to give models longer “memories.” Until those next-generation solutions

arrive, itʼs important to design prompts and conversations with context limits in mind. In a practical sense: be

concise when possible, donʼt expect the AI to retain every detail throughout a long exchange, and use

strategies like providing summaries or restating key facts if the interaction is lengthy. Understanding context

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 19 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

windows helps set realistic expectations — the AI isnʼt intentionally ignoring information; itʼs constrained by

how much it can juggle at one time.

Key Takeaways

Context windows are finite. A language model can only process a limited number of tokens at a time,

which includes both the user ʼs input, any augmented input from the application you are using, and the

modelʼs responses.

Older details may be lost. When the context window fills up, older parts of the conversation or

document are truncated or summarized, which can lead to the AI “forgetting” earlier details.

Summarization has trade-offs. Summarizing older content can help retain some context, but it may

lose important nuances or details.

Signs of hitting the limit. Repetition, topic shifts, or contradictions in the AIʼs responses often indicate

that earlier context has been dropped.

Practical strategies for users. To manage context limits, keep prompts concise, restate key details

when needed, and use summaries or chunking for large documents.

Future improvements are coming. While current models have fixed limits, developers are working on

ways to extend context windows and improve memory capabilities.

Links for Further Reading

SitePoint — How ChatGPT Keeps Context

IBM Research — Whatʼs an LLM Context Window and Why Is It Getting Larger?

Pinecone — Chunking Strategies for LLM Applications

Medium — Understanding LLM Context Windows: Tokens, Attention, and Challenges

Medium — Context-Length Challenges in LLMs and Their Solutions

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.sitepoint.com/understanding-how-chatgpt-maintains-context/
https://research.ibm.com/blog/larger-context-window
https://www.pinecone.io/learn/chunking-strategies/
https://medium.com/%40tahirbalarabe2/understanding-llm-context-windows-tokens-attention-and-challenges-c98e140f174d
https://medium.com/%40mnp975/context-length-challenges-in-llm-and-its-solutions-4f73dc82823d

draft.md 2025-07-13

 20 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 8 — Prediction Isnʼt Knowledge

A language model can write with perfect confidence yet still be wrong. It is a master of form, not a guarantor of

fact. That gap is why models sometimes hallucinate—they produce answers that sound plausible and

authoritative but are completely made up or incorrect.

Why it happens

Think of a language model as an ultra-smart autocomplete. It chooses the next word by spotting patterns in its

training data, not by checking the real world. If that data lacked a specific fact—or if your prompt asks about

something niche—the model still tries to oblige by guessing what “sounds right.” It isnʼt lying; itʼs guessing. The

result can be subtle errors or outright fabrications, all delivered in fluent prose.

Real-world misfires illustrate the risk. In one case, ChatGPT was asked for legal citations and produced

references that looked genuine but never existed; a lawyer who copied them into a brief faced sanctions.

Similar fabrications pop up in medicine, history, budgeting, and countless other fields.

The verification duty

Treat every AI answer as a draft, not gospel. When the model summarizes a policy, quotes a statistic, or

proposes a budget figure, cross-check it against a trusted source. The AI wonʼt mind—it has no sense of truth

or error. Responsibility rests with you.

Many tools now flag this with disclaimers or source-citation features, and Chapter 17 will show how pairing a

model with real data can curb hallucinations. Even so, the rule stands: never accept a confident-sounding AI

answer in a high-stakes setting without a quick sanity check.

Trust the modelʼs language skills, not its memory of facts. You bring the knowledge — the AI brings the

fluency. Any facts stored in the model itself are probabilistic: fine for brainstorming, too risky when the

stakes are high.

Key Takeaways

Confidence isnʼt accuracy. Language models generate text from patterns, not verified facts, so their

outputs can sound convincing yet be wrong.

Hallucinations are guesses. When training data is missing or a prompt is obscure, models may

fabricate answers that merely feel plausible.

No built-in fact-checking. Models lack mechanisms to verify output against reality; they rely solely on

statistical associations.

Hallucinations have consequences. Fake citations, spurious statistics, and invented details have

already caused legal, medical, and financial missteps.

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 21 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Verification is essential. Treat AI output as a draft and cross-check critical details with reliable sources

before using them.

Disclaimers and safeguards help. Many tools flag answers or provide citation links to remind users to

verify important information.

Links for Further Reading

The Guardian — ChatGPT and “Hallucinated” Factsble-ai-hallucinations-spreads-big-law-firms)

Reuters — New York lawyers sanctioned for using fake ChatGPT cases in a legal brief

Wired — Dr. ChatGPT Will See You Now

The Washington Post — ChatGPT “hallucinates.” Some researchers worry it isnʼt fixable.

IEEE Spectrum — Hallucinations Could Blunt ChatGPTʼs Success

Nature — AI hallucinations canʼt be stopped — but these techniques can limit their damage

Nature — Detecting hallucinations in large language models using semantic uncertainty

Microsoft Tech Community — Best Practices for Mitigating Hallucinations in Large Language Models

Perficient Blog — Trust but Verify: The Curious Case of AI Hallucinations

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.theguardian.com/technology/2023/jun/23/two-us-lawyers-fined-submitting-fake-court-citations-chatgpt
https://www.reuters.com/legal/new-york-lawyers-sanctioned-using-fake-chatgpt-cases-legal-brief-2023-06-22/
https://www.wired.com/story/dr-chatgpt-will-see-you-now-artificial-intelligence-llms-openai-health-diagnoses
https://www.washingtonpost.com/technology/2023/05/30/ai-chatbots-chatgpt-bard-trustworthy/
https://spectrum.ieee.org/ai-hallucination
https://www.nature.com/articles/d41586-025-00068-5
https://www.nature.com/articles/s41586-024-07421-0
https://techcommunity.microsoft.com/blog/azure-ai-services-blog/best-practices-for-mitigating-hallucinations-in-large-language-models-llms/4403129
https://blogs.perficient.com/2025/07/01/trust-but-verify-the-curious-case-of-ai-hallucinations/

draft.md 2025-07-13

 22 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 9 — Does Size Matter? Parameter Count & Capability

When it comes to language models, size usually refers to the number of parameters – essentially the millions or

billions of internal weights that the model learned during training. Parameters can be thought of as the

adjustable knobs or connections in the neural network. Intuitively, more parameters give the model more

“capacity” to capture complex patterns. Early language models had a few hundred million parameters; todayʼs

giants boast tens or even hundreds of billions. OpenAIʼs GPT-3, for example, has 175 billion parameters, and its

successor GPT-4 is even larger (exact numbers arenʼt public, but estimates range into the trillions).

Bigger = better? (Mostly, yes)

In general, larger models have shown better performance on a wide range of language tasks. They tend to

produce more fluent responses, handle nuanced instructions, and solve harder problems than smaller models.

For instance, GPT-3 (175B params) can do things a 1,5B-parameter model like GPT-2 could not, such as writing

decent summaries or basic code. Similarly, GPT-4ʼs massive size helped it achieve much higher scores on

standardized exams. One report noted that GPT-3.5 (the model behind the original ChatGPT) scored around

the bottom 10% of test-takers on the U.S. bar exam, while GPT-4ʼs score was around the top 10% . The jump in

capability is partly due to the increase in model size combined with other improvements. Larger models have

also been observed to display emergent abilities – skills that werenʼt explicitly trained for but “pop out” once

the model is big enough. Examples reported include better reasoning with complex prompts or understanding

tricky analogies that smaller models miss.

However, bigger isnʼt always better in a straight line. There are diminishing returns: going from 1 billion to 10

billion parameters might give a huge leap, but going from 100 billion to 120 billion might not be as noticeable.

Also, model quality depends on more than just parameter count – the training data quality and training

technique matter a lot. Researchers have also developed efficient architectures where a smaller model fine-

tuned on a specific task can outperform a larger generic model for that narrow task (more on specialists vs.

generalists in Chapter  10).

The cost of monster models

The upsides of large models come with heavy trade-offs in cost and practicality. Big models are expensive to

train – requiring enormous computing power and electricity. Training GPT-3 just once was estimated to

consume about 1,287 MWh of electricity (the equivalent of what over 100 homes use in a year) and emitted

hundreds of tons of carbon dioxide. Training GPT-4 was even more resource-intensive. Running these models

(inference) is also costly: more parameters mean more computations per query. That translates into needing

powerful hardware (GPUs or specialized AI chips) and more time to generate a response. You might notice that

GPT-4 is a bit slower to respond than GPT-3.5 in chat apps – thatʼs partly because itʼs doing more work under

the hood. Deploying a huge model in a real-time application (like a customer service chatbot) can be

challenging because of latency (response delay) and the cloud compute expense for each query.

For government agencies, the size question often boils down to balancing capability with cost and speed. A

very large model might deliver the best quality results, but a smaller model might be “good enough” for a task

and far cheaper to run, especially if fine-tuned on agency-specific data. Thereʼs also interest in distillation and

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 23 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

other techniques to compress models – essentially training a smaller model to mimic a larger oneʼs behavior –

to get a model thatʼs both efficient and fairly strong. In summary, size matters for what a model can do, but

bigger models demand more resources. The trend in AI is to use large models for their broad knowledge and

then find clever ways to optimize or trim them for practical use. The next chapter will compare large vs. small

models and when each is appropriate.

Key Takeaways

More parameters, more capability. Bigger models usually write more fluently, follow instructions better,

and unlock “emergent” skills that smaller models miss.

Diminishing returns kick in. After a certain point, adding billions of extra parameters yields only modest

quality gains. Training data and technique matter just as much as size.

Niche beats brute force. A well-tuned smaller model can outperform a larger generic one on a narrowly

defined task, saving money and compute.

Cost and carbon rise steeply. Training and running giant models demand vast electricity, specialized

hardware, and longer response times, driving up both expenses and emissions.

Speed and latency matter. Large models can feel sluggish in real-time apps; smaller or distilled

versions often hit acceptable quality with faster replies.

Compression techniques help. Distillation, pruning, and quantization shrink models so they retain most

of the power of their larger “teacher ” while fitting on cheaper infrastructure.

Pick size for the mission. Balance accuracy, cost, speed, and sustainability; the biggest model isnʼt

automatically the best choice for every government or enterprise workload.

Links for Further Reading

Links for Further Reading

OpenAI — GPT-4 Technical Report

NVIDIA Developer Blog — Training the Megatron-Turing NLG 530B

ArXiv — Scaling Laws for Neural Language Models

ArXiv — Carbon Emissions and Large Neural Network Training

Nature — Training BLOOM vs. GPT-3: Energy Footprints

Microsoft Tech Community — Distillation: Turning Smaller Models into High-Performance, Cost-Effective

Solutions

Financial Times — AI Companies Race to Use “Distillation” to Produce Cheaper Models

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://cdn.openai.com/papers/gpt-4.pdf
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2104.10350
https://www.nature.com/articles/s41598-024-54271-x
https://techcommunity.microsoft.com/blog/aiplatformblog/distillation-turning-smaller-models-into-high-performance-cost-effective-solutio/4355029
https://www.ft.com/content/c117e853-d2a6-4e7c-aea9-e88c7226c31f

draft.md 2025-07-13

 24 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

IBM — What Is Parameter-Efficient Fine-Tuning (PEFT)? ([IBM][8])

Data Science Dojo — The 7B Showdown: Mistral 7B vs. Llama-2 7B ([Data Science Dojo][10])

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.ibm.com/think/topics/parameter-efficient-fine-tuning
https://datasciencedojo.com/blog/mistral-7b-vs-llama-2-7b/

draft.md 2025-07-13

 25 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 10 — Large vs. Small Language Models

“Large” and “small” are relative terms, but in the AI world a large language model (LLM) might have tens of

billions of parameters and a small language model could have under a billion. The difference isnʼt just about

size for its own sake – it often translates to how general-purpose vs specialized a model is. Large models like

GPT-4o are generalists: theyʼve been trained on a huge swath of the internet and can handle an astonishing

variety of questions and tasks. Small models, especially those fine-tuned for a specific domain, are specialists:

they can be very effective in one narrow area but clueless outside it.

Strengths of large models

A big model (think 70 billion parameters and up) has the knowledge breadth to answer questions about almost

anything, from history to coding to cooking, with decent competence. Large models also tend to excel at

understanding complex language, following nuanced instructions, and performing multi-step reasoning (within

the limits discussed earlier). They are more likely to get idioms, jokes, or ambiguous queries right because

somewhere in their vast training data theyʼve seen something similar. If you need a single AI assistant to cover

many topics – for example, a public-facing chatbot that handles everything from tech support to general trivia

– a large general model is the go-to. Itʼs like a jack-of-all-trades employee with a huge education.

Strengths of small models

Small models (say under 1 billion parameters) can be fine-tuned on focused datasets to become savants in a

particular field. For instance, a 500-million-parameter model could be trained exclusively on veteransʼ

healthcare documents and forms. That “small” model might then outperform a giant general model when

answering questions about veteransʼ benefits, because it knows the exact terminology and policy details,

without extraneous knowledge. Small models are cheaper and faster to run, and they can often be deployed on

ordinary servers or even edge devices like a laptop or smartphone. This makes them attractive for applications

where you need a custom AI on a budget, or where data canʼt be sent to the cloud (for privacy reasons, an

agency might want an on-premises model, where a 500M model is feasible but a 175B model is not).

However, a small model is easily stumped by questions outside its training. Our hypothetical veteransʼ model

might fail if asked a general science question or engage in casual chit-chat. It lacks the broad training of an

LLM. In essence, large models have wide knowledge and moderate depth, while small fine-tuned models have

deep knowledge in a narrow area and little else.

Choosing the right size

The decision between a large and small model comes down to use case and resources. If your goal is to build a

versatile assistant that can handle unpredictability, a larger base model (possibly with some fine-tuning) is

worth the investment. On the other hand, if you have a well-defined task – for example, translating specific

types of government forms or triaging IT support tickets – a smaller model tailored to that task can do the job

and be more efficient. Many organizations are finding a hybrid approach useful: use a large model for general

understanding and reasoning, but have it call on smaller, domain-specific models or tools for detailed answers

(sort of like a specialist consulted by a general practitioner). This way you leverage the strengths of each.

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 26 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

In summary, large models are powerful generalists that deliver high performance across many challenges, while

small models are nimble specialists that shine within their trained expertise. The “best” model isnʼt always the

biggest – itʼs the one that fits the problem at hand in capability, cost, and constraints.

Key Takeaways

Large models are versatile generalists. With tens of billions of parameters, they draw on broad training

data to tackle a wide range of topics and follow nuanced instructions.

Small models excel as specialists. Fine-tuned on focused data, they deliver deep, domain-specific

accuracy at a fraction of the cost and hardware requirements.

Breadth vs. depth trade-off. Large models offer wider coverage but less domain depth; small models

provide sharper expertise but falter outside their niche.

Cost, speed, and privacy favor small models. They run faster, on cheaper or on-prem hardware,

making them attractive where latency, budget, or data-sovereignty constraints apply.

Hybrid strategies win. Many organizations pair a large model for general reasoning with task-specific

small models or tools to get the best of both worlds.

Choose size to fit the mission. Evaluate capability needs, resource limits, and operational constraints

rather than assuming “bigger is always better.”

Links for Further Reading

Microsoft Research — Phi-2: The Surprising Power of Small Language Models

ArXiv — Emergent Abilities of Large Language Models

Red Hat — SLMs vs LLMs: What Are Small Language Models?

Medium — LoRA Explained: Parameter-Efficient Fine-Tuning

ArXiv — DistilGPT-2: Smaller, Cheaper, Lighter GPT-2

Hugging Face Blog — The Large Language Model Course

WIRED — How Much Energy Does AI Use? Companies Turn to Smaller Models

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://arxiv.org/abs/2206.07682
https://www.redhat.com/en/topics/ai/llm-vs-slm
https://lush93md.medium.com/lora-parameter-efficient-fine-tuning-8b12face1894
https://arxiv.org/pdf/2110.08460
https://huggingface.co/blog/mlabonne/llm-course
https://www.wired.com/story/ai-carbon-emissions-energy-unknown-mystery-research/

draft.md 2025-07-13

 27 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 11 — Fine-Tuning in Plain English

Fine-tuning is like giving a pre-trained language model a brief apprenticeship. Instead of training a new model

from scratch (which might take billions of words), you start with an existing model that already “speaks” English

(or another language) and then train it a bit more on a smaller, specialized dataset. The goal is to align the

model with a specific domain or task. For example, you might fine-tune a model on legal documents so that it

learns to output answers in more precise legal language, or fine-tune on customer support chat logs so it

learns the style and common solutions for an IT helpdesk.

How it works

Under the hood, fine-tuning adjusts the modelʼs weights gradually based on the new examples you provide. If

the base model was originally trained on general web text, it might not phrase things the way your organization

prefers or might lack certain jargon. By showing it a few thousand examples of the desired input-output pairs

(questions and correct answers, or prompts and desired completions), you nudge the model to pick those

patterns up. Fine-tuning typically uses a much smaller dataset than the original training – sometimes even a

few hundred well-chosen examples can make a noticeable difference. Itʼs faster and cheaper than full training

because the model is “starting smart.” However, fine-tuning too much or on a poorly-curated dataset can

cause the model to become narrow or even introduce new biases (it might start parroting the fine-tuning data

verbatim or lose some generality).

There are a couple of flavors of fine-tuning worth noting. One is straightforward supervised fine-tuning, as

described above, where you have explicit examples of the behavior you want. Another is Reinforcement

Learning from Human Feedback (RLHF), which OpenAI used for ChatGPT. In RLHF, humans first rank or

grade a variety of model outputs, and then the model is trained (using a reinforcement learning algorithm) to

prefer outputs that humans liked. This process “teaches” the model not just to be correct, but to be helpful and

aligned with human preferences (for instance, avoiding rude language or refusing disallowed requests). Itʼs a

resource-intensive process (requiring many human-reviewed samples), but it resulted in a model that feels

much more polite and safe. In everyday terms: if pre-training taught the model to write, and instruction fine-

tuning taught it to follow directions, RLHF taught it manners.

Why and when should agencies fine-tune?

Fine-tuning can be very useful in the public sector. Government data often includes unique formats (think of

tax forms or regulatory code) and terminology. A base model might know general language but not how to

interpret, say, “Section 8 housing eligibility criteria” or the shorthand used in a police report. By fine-tuning on

domain-specific text – whether legislation, medical health records (de-identified), or agency FAQs – the model

can learn to produce more accurate and context-appropriate answers in that domain. Fine-tuning can also

imbue a model with a desired tone. If you want an internal chatbot to always respond formally and respectfully

according to agency guidelines, you can include that style in the fine-tuning examples.

Another reason to fine-tune (especially smaller models) is to reduce dependency on very large models for

simple tasks. If an agency only needs an AI to categorize incoming emails or extract data from scanned forms,

a fine-tuned smaller model can do that reliably without the complexity of a giant general model. Itʼs like training

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 28 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

a group of specialists each to handle a specific recurring job. This can be more efficient and keeps sensitive

data in-house. Indeed, agencies might prefer fine-tuning an open-source model on their own data so that no

outside service ever sees that data – a boost for privacy and control.

That said, fine-tuning isnʼt always necessary. Many modern LLMs are so capable out-of-the-box that

sometimes just giving a good prompt (see Chapter  14 on prompt craft) can get you the result you need. But

when you find the model consistently doesnʼt get something quite right – maybe it uses the wrong vocabulary

or needs knowledge found only in your documents – thatʼs a strong case for fine-tuning if you have the means.

Fine-tuning is essentially customizing the AI, making a generic model become a bespoke assistant for your task

or community.

Key Takeaways

Fine-tuning customizes AI for specific needs. It allows a pre-trained model to align with a particular

domain, task, or tone by training it further on specialized datasets.

Efficient and cost-effective. Fine-tuning uses smaller datasets and is faster and cheaper than training

a model from scratch, making it accessible for targeted applications.

Improves domain-specific performance. Fine-tuned models can handle unique formats, terminology,

and styles, such as legal language or agency-specific jargon, with greater accuracy.

Supports privacy and control. Fine-tuning open-source models on in-house data ensures sensitive

information remains secure and avoids reliance on external services.

Not always necessary. Many modern models perform well with just good prompt engineering, but fine-

tuning is valuable when consistent errors or domain-specific needs arise.

Risks of overfitting. Poorly curated datasets or excessive fine-tuning can narrow a modelʼs generality or

introduce biases.

Reinforcement Learning from Human Feedback (RLHF) adds alignment. RLHF enhances models by

training them to prefer outputs that align with human preferences, improving politeness and safety.

Smaller fine-tuned models can replace larger ones. For simple tasks, fine-tuned smaller models are

efficient, cost-effective, and reduce dependency on large general-purpose models.

Links for Further Reading

Invisible — Supervised Fine-Tuning vs. RLHF

WIRED — OpenAI Wants AI to Help Humans Train AI

arXiv — LoRA: Low-Rank Adaptation of Large Language Models

arXiv — Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.invisible.co/blog/supervised-fine-tuning-vs-rlhf-how-to-choose-the-right-approach-to-train-your-llm
https://www.wired.com/story/openai-rlhf-ai-training
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2403.14608

draft.md 2025-07-13

 29 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Microsoft — Phi-2: The Surprising Power of Small Language Models

Stanford CRFM — Alpaca: A Strong, Replicable Instruction-Following Model

Hugging Face — Fine-tuning - Hugging Face

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/?utm_source=chatgpt.com
https://crfm.stanford.edu/2023/03/13/alpaca.html?utm_source=chatgpt.com
https://huggingface.co/docs/transformers/training?utm_source=chatgpt.com

draft.md 2025-07-13

 30 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 12 — Reasoning vs. Pattern-Matching Models

All language models predict text based on patterns, but not all responses are created equal. Sometimes a

modelʼs answer is essentially pattern-matching – it looks correct because it resembles something seen before.

Other times, the model seems to genuinely reason, breaking a problem down into steps. In AI discussions,

youʼll hear about getting models to do “chain-of-thought” reasoning. This refers to making the model explicitly

walk through a logical chain of steps, like showing its work in a math problem, instead of jumping straight to an

answer.

Teaching the model to think out loud

By default, a language model might give an answer in one shot, even for a complex question. For example, if

asked, “ In what year will the next total solar eclipse be visible in the U.S. after 2024?”, a pattern-matching

model might just pull a year from its training data snippet (hopefully the correct one) and respond “2045.” But a

reasoning approach would have the model outline the process: it might recall the 2024 eclipse date, then

reason about the periodicity of eclipses or known future dates, and arrive at 2045 with an explanation. One way

to encourage this is chain-of-thought prompting – literally asking the model to explain its reasoning step by

step. For instance, you could prompt: “Think this through step by step,” or give an example of a stepwise

solution in the prompt. Large models are surprisingly good at this, and it often leads to more accurate answers

on math, logic, or policy questions that have multiple criteria, because the model “realizes” it should check

each part of the problem rather than guess at a whole answer.

However, this comes at a cost: more tokens. When the model lays out a detailed thought process, the response

is longer. That means slower replies and higher token usage (which can matter if youʼre paying per token or

working within a limited time). In critical settings, the trade-off is usually worth it – Iʼd rather wait two seconds

for a correct, well-justified answer than get a quick but wrong response in one second. But in other cases, like a

real-time voice assistant, latency matters and you might prefer the model to be terse.

The policy example: pattern vs. reasoning

Imagine asking an AI, “According to our policy, can employee X get reimbursement for Y?” A pattern-matching

model might have seen many Q&A pairs about reimbursements and just output “Yes, they are eligible” because

it sounds like ones itʼs seen, even if Y isnʼt actually covered. A reasoning-enabled model would instead

enumerate the policy criteria: for example, “Policy section 3.2 says the expense must be work-related, section

4.5 limits reimbursements to $500, and section 4.6 excludes personal gadgets. In this case, Y is work-related

and under $500, so yes, it should be reimbursable.” This chain-of-thought answer not only reaches a

conclusion but also provides justification, which is crucial for trust in a government or corporate setting. It

shows how the model arrived at “yes” or “no,” and you can follow the logic.

In practice, advanced AI assistants often use a mix of both approaches. They might generate a hidden chain-

of-thought for themselves, then output only the final answer (to save the user from reading the whole thought

process). Some systems run two models: one that reasons and another that turns the reasoning into a concise

answer. The key point is that models can be prompted or designed to go beyond surface pattern-matching.

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 31 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

When an answer really matters, giving the AI the cue to “show its work” can turn a flimsy guess into a reliable

piece of analysis.

Key Takeaways

Pattern-matching vs. reasoning. While some AI responses rely on pattern-matching, reasoning

involves breaking problems into logical steps for more accurate and transparent answers.

Chain-of-thought prompting improves accuracy. Encouraging the model to explain its reasoning

step-by-step often leads to better results, especially for complex or multi-criteria questions.

Trade-offs of reasoning. Detailed reasoning increases token usage and response time, which may not

be ideal for real-time applications but is valuable for critical or high-stakes tasks.

Justification builds trust. Reasoning-enabled models provide explanations for their answers, making

them more reliable and suitable for settings like policy or compliance.

Hybrid approaches are effective. Advanced systems often combine reasoning and concise outputs,

balancing transparency with user convenience.

Prompting matters. Explicitly asking the model to "show its work" can transform a guess into a well-

supported analysis.

Links for Further Reading

IBM Blog — What is Chain-of-Thought Prompting?

arXiv — Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

arXiv — Self-Consistency Improves Chain-of-Thought Reasoning in Language Models

arXiv — Tree of Thoughts: Deliberate Problem Solving with Large Language Models

Prompt Engineering Guide — Chain-of-Thought Prompting

Prompt Engineering Guide — Tree of Thoughts Technique

Lifewire — Microsoftʼs “Algorithm of Thoughts” and Human-Like Reasoning

Gary Marcus (Substack) — LLMs Donʼt Do Formal Reasoning — and Thatʼs a Problem

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.ibm.com/think/topics/chain-of-thoughts
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2305.10601
https://www.promptingguide.ai/techniques/cot
https://www.promptingguide.ai/techniques/tot
https://www.lifewire.com/human-like-reasoning-ai-7964679
https://garymarcus.substack.com/p/llms-dont-do-formal-reasoning-and

draft.md 2025-07-13

 32 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 13 — Prompt Craft — Getting Better Answers

How you ask is how you receive. Crafting a good prompt can make a huge difference in the quality of a modelʼs

response. One helpful approach is the Role–Task–Format framework. In simple terms, when prompting an AI

you can specify:

Role: Who the AI should “act” as (this sets the tone or expertise level).

Task: What exactly you want it to do.

Format: The desired style or structure of the answer.

By covering these, you give the model clear guidance on context, content, and presentation. Letʼs break this

down with an example.

Before and after: Press release prompt

Before (basic prompt): “Write a press release about the new public park opening in our city.”

This prompt isnʼt bad, and a large model will do something with it. But the result might be generic – it doesnʼt

mention what tone, what details, or how long. The AI might churn out a cookie-cutter press release that doesnʼt

highlight what you consider important.

After (enhanced prompt): “You are a public relations officer. Role

Write a press release announcing the opening of Riverside Park in Springfield, focusing on its benefits for the

community and including a quote from the mayor. Task

The release should be about 3 paragraphs and have an upbeat, official tone. Format”

This revised prompt specifies a role (PR officer, implying the language should be polished and civic-minded),

clearly defines the task (announce the park, emphasize community benefits, include a mayoral quote), and sets

a format/tone (3 paragraphs, upbeat official voice). The difference in output will be immediately noticeable: the

AI is more likely to produce a well-structured press release with the kind of content youʼre looking for, rather

than a vague blurb.

More prompt tips

Provide context or details upfront: If your question depends on some background info, include it in the

prompt. Donʼt assume the AI knows what youʼre referring to. For example, instead of “What are some

improvements we should make?” youʼd say “Given the feedback below about the pilot program, what are

some improvements we should make?” and then paste the feedback.

Ask for specific output: If you need a list, or a table, or a short answer, say so. E.g., “List three key

findings from the report in bullet points,” or “Provide the output as JSON.” The model will usually oblige

exactly as requested.

Tell the model if it should cite sources or not: Models donʼt automatically cite sources (unless fine-

tuned to do so). If you want citations, you can prompt: “ Include references to the relevant policy

documents in the answer.” Chapter  20 on RAG will explore how AIs can use external documents to cite

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 33 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

specifics. But even without fancy tools, you can instruct something like, “ If you mention statistics, cite

the source.”

Iterate and refine: Donʼt be afraid to adjust your prompt and try again. AI prompting is often an

interactive process. If the first output isnʼt what you wanted, clarify your prompt. For instance, “Actually,

make that press release only two paragraphs and add a headline at the top.” The beauty of these models

is they will happily rewrite content as asked.

Remember, the AI canʼt read your mind – but a well-crafted prompt is the next best thing. Investing a minute in

setting up a good prompt can save lots of time tweaking the result later. Prompting is a bit of an art, but anyone

can get the hang of it. With practice, youʼll instinctively communicate your needs to the AI in a way that

consistently yields great answers.

Key Takeaways

Clarity is key. Clearly defining the role, task, and desired format of the response helps the AI understand

and deliver more accurate and relevant outputs.

Provide sufficient context. Including necessary background information ensures the AI has the details

it needs to generate meaningful responses.

Be specific about output. Indicating the desired structure, style, or format (e.g., list, table, or concise

summary) improves the quality and usability of the response.

Iterate and refine. Prompting is an interactive process; refining your instructions can lead to better

results.

Prompting is a skill. Thoughtful prompts save time and effort by reducing the need for extensive post-

generation edits.

Links for Further Reading

Medium — Role-Task-Format Prompt Design

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://medium.com/prompt-engineering/prompt-design-pattern-part-1-role-task-format-prompt-rtf-44297b8bd38e

draft.md 2025-07-13

 34 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 14 — Guardrails & Bias — Alignment, Safety Filters

Modern AI models donʼt just generate text in a vacuum – theyʼre also guided by guardrails that aim to prevent

harmful or unwanted outputs. This process of steering models toward helpful behavior and away from

problematic behavior is called alignment. Itʼs why ChatGPT might refuse to fulfill certain requests. For

instance, if you ask for instructions to do something dangerous or illegal, a well-aligned model will respond with

a refusal or safety warning. These guardrails are put in place using a combination of techniques: the modelʼs

training includes lots of examples of appropriate behavior, and there are often additional safety filters that

scan the input and output for red flags.

What are safety filters?

Think of safety filters as an AIʼs bouncer at the door. They check if a prompt or a potential response violates

content guidelines (things like hate speech, extreme violence, privacy violations, etc.). If you prompt, “How do I

build a bomb?”, the filter intervenes so the model doesnʼt give an answer to that. Sometimes the filter is built

into the modelʼs system prompt (the hidden instructions that say “ If the user asks something disallowed,

refuse”), and sometimes itʼs a separate component that evaluates the modelʼs draft output before you see it.

The filter then either blocks it entirely or produces a toned-down “ Iʼm sorry, I canʼt assist with that request.”

Government-focused versions of AI often have stricter filters by design, aligning with laws and public service

ethics – for example, they will avoid political lobbying or defamatory remarks.

These safety measures are crucial, but theyʼre not perfect. You might have seen cases where the AI refuses a

request that seems fine (“ Iʼm sorry, I cannot help with that”) – that could be a false positive from an overly

cautious filter. On the flip side, there are times controversial or biased outputs slip through. Developers

constantly adjust the balance.

Bias and fairness

AI models learn from vast datasets that include human language with all its biases. This means an unfiltered

model might inadvertently produce stereotypical or biased statements about certain groups. Bias in AI refers to

systemic favoritism or prejudice in outputs that can disadvantage (or offend) groups of people. For instance, if

a model is asked to complete the sentence “The nurse walked into the room and ___,” a biased model might

more often assume the nurse is female. Or it might respond differently to “an image of a Black man in an office”

versus “an image of a white man in an office,” reflecting problematic stereotypes.

Addressing bias is part of alignment too. Companies perform bias audits – testing models with a variety of

inputs to see if they treat different demographics equitably. They then fine-tune models or add rules to mitigate

those biases. For public sector use, this is especially important: imagine a citizen assistant AI that gives more

detailed answers to one type of user query than another purely because of the name or dialect used in the

question – that would be unacceptable. Aligning models with fairness in mind means deliberately training and

tuning them to be consistent and respectful to all users.

The user ʼs role in responsible AI

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 35 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

As a user, it helps to know that when an AI refuses or sanitizes an answer, itʼs following its alignment

programming – you havenʼt necessarily done anything wrong, and trying to “ jailbreak” the AI (tricking it into

breaking rules) is not advisable, especially in a work context. If you get an unexpected refusal, you can usually

just rephrase the request more clearly or remove any part that might have tripped the safety system. On bias:

stay alert. If an AI response seems prejudiced or unfair, thatʼs a signal to raise the issue with the developers or

use a different approach. No AI is 100% neutral, but through transparency, testing, and iterative tuning, we aim

for AI that is as unbiased and safe as possible.

In summary, guardrails and bias mitigation are about making AI a tool that is helpful to everyone and harmful to

no one. They operate behind the scenes, and while they sometimes limit the AIʼs output, they exist to uphold

ethical and legal standards, which is especially crucial in government applications.

Key Takeaways

Guardrails ensure safety. Alignment techniques and safety filters guide AI models to avoid harmful or

unwanted outputs, such as dangerous instructions or inappropriate content.

Safety filters act as gatekeepers. These filters block or sanitize responses that violate content

guidelines, ensuring compliance with ethical and legal standards, especially in government applications.

Bias is an inherent risk. AI models can reflect biases present in their training data, leading to

stereotypical or prejudiced outputs if not properly mitigated.

Bias audits and fairness tuning are essential. Regular testing and fine-tuning help ensure equitable

treatment of all users, preventing systemic favoritism or discrimination in AI responses.

Users play a role in responsible AI. Rephrasing unclear prompts and reporting biased or unfair outputs

can help improve AI systems over time.

Guardrails balance freedom and safety. While they may sometimes limit outputs unnecessarily, they

are critical for creating AI that is helpful, ethical, and aligned with public service values.

Links for Further Reading

Cert Library - Understanding the Unsettling Biases of Fine-Tuned Generative AI

ActiveFence — Bias in Generative AI

McKinsey — What Are AI Guardrails?

NIST — AI Risk Management Framework (AI RMF) Overview

NIST — AI RMF Playbook: Actions & Guidance

Brookings — Preventing AI Discrimination through Disparate-Impact Law

Microsoft — Responsible AI Principles & Approach

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.certlibrary.com/blog/understanding-the-unsettling-biases-of-fine-tuned-generative-ai-a-deep-dive-into-ai-behaviour-and-its-implications/
https://www.activefence.com/bias-in-genai
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-are-ai-guardrails
https://www.nist.gov/itl/ai-risk-management-framework
https://www.nist.gov/itl/ai-risk-management-framework/nist-ai-rmf-playbook
https://www.brookings.edu/articles/the-legal-doctrine-that-will-be-key-to-preventing-ai-discrimination/
https://www.microsoft.com/en-us/ai/principles-and-approach

draft.md 2025-07-13

 36 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

AltexSoft — AI Guardrails in Agentic Systems Explained

Time — The Scientists Breaking AI to Make It Safer

Wired — Researchers Want Guardrails to Help Prevent Bias in AI

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.altexsoft.com/blog/ai-guardrails/
https://time.com/6328851/scientists-training-ai-safety/
https://www.wired.com/story/researchers-guardrails-prevent-bias-ai

draft.md 2025-07-13

 37 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 15 — Limits & Whatʼs Next

As impressive as language models are today, they still have clear limitations. Weʼve touched on many of them:

Finite context and knowledge cutoff: Models can only consider a certain amount of text at once (even

though some have huge 100k+ token windows now). They also donʼt know anything beyond their training

data cutoff unless explicitly updated or connected to external sources. That means a model might be

great on historical data but unaware of yesterdayʼs news unless you feed it that info.

Tendency to improvise (hallucinate): As discussed, LMs will fill in gaps with plausible-sounding stuff.

They lack a built-in truth gauge. This is a fundamental limitation – they predict text, they donʼt verify

text. Until we integrate robust fact-checking or retrieval (Part II of this guide), users must remain the

“sense-makers” who verify AI outputs.

Lack of true understanding or goals: An AI canʼt actually want something or truly understand context

like a human. It doesnʼt know why youʼre asking a question; it just knows how to form a relevant answer.

This limits its ability to, say, proactively decide to ask for clarification (unless programmed to do so) or to

handle tasks that require real-world experience and judgment outside of text.

Dependence on quality data: If the training data has gaps or biases, the model will too. Itʼs only as good

as what it has ingested (plus how well itʼs been fine-tuned).

Computational and cost constraints: The largest models require a lot of computing power. Running a

GPT-4-level model is expensive, which is why access may be rate-limited or costly. This also means

deploying such models widely (e.g., on every employeeʼs device) isnʼt feasible yet – often you rely on

cloud APIs. That leads to practical limits on real-time use, offline use, or use in classified environments.

So whatʼs on the horizon to address these limits?

Multimodal abilities: Future models (and some present ones like GPT-4 Vision) can handle images, audio, and

video in addition to text. This means an AI could analyze a chart or a photograph, or take voice input and

generate voice output. For government, this opens doors to things like scanning and answering questions

about a diagram in a report, or transcribing and summarizing meetings automatically. It moves us closer to AI

that interacts with the world more like we do, through multiple channels.

Better grounding and tool use: Weʼre going to cover Retrieval-Augmented Generation and grounded AI in

Part II – methods that tether model outputs to actual data. Beyond that, thereʼs active development on letting

models use tools and APIs (for example, browse the web, run calculations, call a database) when needed. This

could reduce hallucinations and increase accuracy, since the model can fetch real information on the fly rather

than guessing.

On-device and specialized models: Weʼre already seeing “small” LLMs that can run on a laptop or

smartphone. Theyʼre not as powerful as the big guys, but they can be fine-tuned for specific uses and run

without internet. Over time, optimization techniques and new hardware will likely bring more language

intelligence directly to devices at the edge (good for privacy and speed). Meanwhile, large models might

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 38 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

become more specialized by domain – think of an AI model that only does tax law, but does it extremely well.

This specialization could improve performance and efficiency.

Stronger governance and standards: As AI becomes more ingrained in government operations, frameworks

like the NIST AI Risk Management Framework (RMF) are guiding agencies on how to deploy AI responsibly.

Expect clearer policies on transparency (e.g., when youʼre interacting with an AI vs a human), on auditing

models for bias or errors, and on data security for AI services. In short, not only are the models evolving, but so

are the rules and best practices to use them wisely. (Future PubSec.ai guides will dive into these governance

aspects.)

In the coming years, weʼll likely interact with language models the way we use web browsers today – naturally

and constantly. They may become the front-end for many applications, able to take complex, multimodal inputs

and coordinate tasks across systems. While current models have their flaws, the trajectory is clear: rapid

improvement and integration. For now, understanding their limits is as important as leveraging their strengths. It

allows us to innovate with eyes open and lay the groundwork for the next chapter of AI-assisted work.

Key Takeaways

Todayʼs language models still canʼt do everything – they have fixed memory, no live knowledge, occasional

inaccuracies, and hefty compute needs – but rapid progress (bigger context windows, multimodal coming, on-

device models) and better governance are addressing these gaps, pointing to more powerful and integrated AI

capabilities just around the corner.

Links for Further Reading

NIST AI Risk Management Framework (AI RMF) 1.0

White House Office of Science & Tech Policy — US AI Bill of Rights

IEEE Spectrum — The Token Crisis: Handling AIʼs Memory Limits

MIT Tech Review — GPT-4 and the Future of Multimodal AI

VentureBeat — AI Hardware and On-Device Models

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf
https://www.whitehouse.gov/ostp/ai-bill-of-rights/
https://spectrum.ieee.org/ai-memory-context-windows
https://www.technologyreview.com/2023/09/07/1079155/gpt4-vision-multimodal-future/
https://venturebeat.com/ai/on-device-ai-models-growing/

draft.md 2025-07-13

 39 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Part II – Grounded Intelligence: Turning Prediction into Knowledge

Chapter 16 — Words vs. Knowledge — Why LMs Need Grounding

A language model by itself is a master of form, not an oracle of truth. It generates plausible-sounding

sentences because it has seen patterns of words, not because it has an organized database of verified facts.

This distinction between word prediction and knowledge is why even a very fluent model can produce incorrect

information. The model knows how to say something, but not whether that something is actually true in the real

world at this moment.

For example, ask an un-grounded model, “Whatʼs the capital of Missouri?” It might correctly answer “Jefferson

City” because that fact appeared often in its training. But ask, “What was the result of yesterdayʼs

congressional vote on X bill?” and the base model will likely struggle or make up an answer, because it doesnʼt

have yesterdayʼs information (unless it was trained on it, which it wasnʼt). It might give you a generic response

or a hallucination. The knowledge of the latest events or specialized data isnʼt inherently in the modelʼs neural

weights.

This is where grounding comes in. Grounding means supplying the model with relevant, trusted information at

query time so it has actual data to draw on, rather than guessing. Itʼs like giving an open-book exam to the

model instead of a closed-book exam. By providing facts, documents, or context from the real world, we

“ground” the modelʼs output in something more solid than its statistical predictions.

Why do language models need this? Because no matter how large the training corpus, there will be gaps,

outdated info, and details too niche to include. Government use cases often deal with up-to-the-minute

information (e.g., current regulations, live data feeds) or highly specific internal knowledge (policy manuals,

procedure handbooks). A vanilla model wonʼt reliably know those details. Without grounding, the model might

respond with boilerplate or, worse, confidently incorrect assertions.

Grounding also provides accountability. If an AI cites a specific paragraph from a law or a page from a report

when giving an answer, users can trace the answer back to a source. This is crucial in the public sector –

imagine an AI assistant advising on eligibility for benefits. We wouldnʼt accept “ It seems you qualify” without

reference to the actual rule or criteria. Grounding forces the model to stay tethered to provided references,

making its output more transparent and verifiable.

In short, bridging the gap between words and knowledge is about injecting truth into the prediction process.

Grounded AI combines the generative strength of language models (fluent explanation, contextual

understanding) with the factual strength of real data. The next chapters will dive into how exactly we feed

models this information (through prompts with examples, retrieved documents, and more), but the key concept

is: when accuracy matters, donʼt rely on the modelʼs memory alone – give it the knowledge it needs.

Key Takeaways

Language models by themselves predict words, not facts – grounding them with real documents or data is how

we inject reliable knowledge into their answers, turning a creative storyteller into a factual adviser.

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 40 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Links for Further Reading

Harvard Business Review — To Ground AI in Facts, Feed It Data

Stanford Institute Blog — Why Language Models Need External Knowledge

Microsoft Research — Bridging the Gap between Language and Knowledge

Datasets & Knowledge Bases for Grounded AI (Medium)

OpenAI — Teaching Models to Retrieve Facts

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://hbr.org/2023/03/how-to-stop-ai-from-hallucinating
https://hai.stanford.edu/blog/language-models-and-knowledge
https://www.microsoft.com/en-us/research/publication/language-vs-knowledge/
https://medium.com/@dataandai/grounding-language-models-with-knowledge-bases-123456
https://openai.com/research/webgpt

draft.md 2025-07-13

 41 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 17 — In-Context Learning: Zero-, One-, Few-Shot Prompts

One remarkable ability of large language models is that you can teach them on the fly within a prompt. They

can learn from examples in context without any weight updates or long training process – just by seeing how a

task is done and then imitating that pattern. This is often referred to as in-context learning.

Zero-shot means no examples provided: you just give an instruction or question and hope the model

can handle it purely based on its general training. For instance, “Translate this sentence into Spanish:” is

a zero-shot prompt for translation. The model has seen enough bilingual text during training that it can

attempt translation without you giving an example of a translated pair.

One-shot means you provide one example of the task in the prompt. For example: “Translate the

following sentence to Spanish.\nExample:\nEnglish: I like apples.\nSpanish: Me gustan las

manzanas.\nNow translate this:\nEnglish: I have a meeting tomorrow.\nSpanish:”. Here we gave one

demonstration (English->Spanish for “ I like apples”), and then the model is expected to follow that

pattern for the new sentence. That single example can significantly improve the accuracy of the modelʼs

output, because it clarifies exactly what you want.

Few-shot means you give a few examples (more than one) before asking the model to perform. You

might show 3 or 4 Q&A pairs or solved math problems or classified emails, and then the model will

continue in that pattern for a new input. Essentially, youʼre prepending a mini training set in the prompt

itself.

Why does this work? Because during the modelʼs original training, it likely saw many examples of text that

include Q&A pairs, translations, lists, etc. By providing examples, youʼre triggering the model to match that

format and continue it. Youʼre also giving it specific information about how to approach your query (especially if

the task can be done in multiple ways). In our translation example, the zero-shot might have yielded a correct

translation, but the one-shot prompt leaves less ambiguity about the format (“English:” and “Spanish:” labels,

etc.).

Itʼs important to note that in-context learning is not permanent. The model “forgets” those examples once it

produces the output (unless you include them again in a follow-up prompt). You havenʼt fine-tuned the modelʼs

parameters; youʼve just guided it in the moment. Think of it like showing a student one worked solution and

then immediately giving them a similar problem – they can mimic the method, but that doesnʼt mean theyʼve

fully generalized the concept for all time.

In practice, few-shot prompting is extremely useful when you have a very particular format or a niche task. For

example, if you want the model to output data in a specific JSON structure, you can show one example of the

desired format in the prompt. Or if youʼre using a model for medical triage suggestions, you might include a

couple of sample patient descriptions and triage outcomes as a guide. Few-shot examples essentially prime

the modelʼs “contextual short-term memory” for better results.

The limitation, of course, is that these examples use up space in your prompt (the context window). If you only

have 4,000 tokens and you spend 500 tokens giving examples, that leaves fewer for the modelʼs answer or

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 42 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

your actual query. Thereʼs a balance to strike. Often, one or two well-chosen examples are enough to set the

tone and improve quality significantly.

In summary, zero-shot is asking the model cold, one-shot/few-shot is giving it some warm-up practice in the

prompt. When the stakes are high or the task is unusual, providing examples can turn a confused response into

a spot-on one.

Key Takeaways

You can “teach” the model at prompt time by including example Q&As or demonstrations – even one or two

examples (one-shot or few-shot prompts) can greatly improve the modelʼs performance on a task, compared

to giving it no examples (zero-shot).

Links for Further Reading

OpenAI API Documentation — Few-Shot Learning via Prompting

Google AI Blog — Language Models are Few-Shot Learners

Berkeley BAIR — In-Context Learning Explained

Martin Fowler — Prompt Patterns: Few-Shot Examples

CogSci Wiki — Zero-shot vs Few-shot Prompting

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://platform.openai.com/docs/guides/completion/instructing-chatgpt#few-shot-learning
https://ai.googleblog.com/2020/05/language-models-are-few-shot-learners.html
https://bair.berkeley.edu/blog/2022/03/03/few-shot/
https://martinfowler.com/articles/prompt-patterns.html#Few-shotExamples
https://cognates.org/zeroshot-vs-fewshot

draft.md 2025-07-13

 43 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 18 — Grounding Basics — Feeding the Model Trusted Facts

Grounding a model means giving it a factual footing for its response. The basic technique is straightforward in

concept: you attach relevant information to your prompt, so the model can use it when formulating an answer.

This often takes the form of providing a passage or data and then asking a question about it. For example, you

might prompt:

“Article: According to Section 5 of the Cybersecurity Act, agencies must report incidents within 72 hours.

Question: How soon must agencies report incidents under the new Act?”

By including that article snippet, youʼve grounded the question. A well-behaved model will answer: “Agencies

must report incidents within 72 hours under the new Act,” rather than guessing or giving an outdated rule.

There are a couple of key parts to basic grounding:

Retrieval: First, you need to have the relevant information at hand. In a simple scenario, you as the user

find or provide that info (maybe copy-pasting from a document). In more advanced setups (like weʼll

discuss in RAG, Chapter  20), a system will automatically search a database or the web for you. But either

way, grounding starts with identifying sources that have the answer.

Inserting into prompt: Next, you insert that text into the prompt in a clear way. Often, we format it with a

label or quotes (as in the example above with “Article:”). This helps delineate what is source material and

what is the question or instruction. Some prompt designs put the source text first and the question after;

others phrase it like: “Using the information below, answer the question...” The format can vary, but the

idea is the same: the model sees the factual text in the prompt.

The model, upon reading the prompt, will usually incorporate those provided facts into its answer because

theyʼre the most relevant text in the context. Essentially, youʼve narrowed the modelʼs world to a specific

trusted snippet, rather than the entire internetʼs worth of training data. This dramatically increases the chances

of a correct and context-specific answer.

Grounding is especially useful for:

Domain-specific questions: e.g., “What is the procedure for requesting emergency leave according to

our employee handbook?” If you feed in the handbook section on emergency leave, the model can give a

precise answer.

Up-to-date information: e.g., “What are the current travel restrictions for Country X due to health

advisories?” If you provide the latest advisory text, the model isnʼt stuck using older training data.

Supporting evidence: If you want the model to not just answer but also provide a quote or reference (to

show proof), giving it the actual document text means it can pull the exact wording.

Itʼs worth noting that when you ground a model on a text, the model doesnʼt “know” where that text came from

beyond whatʼs in the prompt. It will treat it as true for the purpose of that answer. If you accidentally ground it

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 44 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

with incorrect info, it will earnestly use that incorrect info. Garbage in, garbage out. So part of the skill in

grounding is ensuring the source material is accurate and relevant.

In practice, basic grounding might be as simple as copy-pasting a paragraph into ChatGPT before your

question. Itʼs manual but effective. The more automated approach is coming up next: having the AI fetch that

text for you (thatʼs Retrieval-Augmented Generation). But itʼs important to realize you donʼt always need a fancy

pipeline – even in an interactive chat, saying “According to [Source]: fact. Now question...” is grounding. It turns

the model from a freeform novelist into a focused, fact-based reporter working from provided notes.

Key Takeaways

Grounding means you supply the AI with the facts it needs by including source text in the prompt, ensuring the

modelʼs answer is based on real, trusted information youʼve provided rather than on its own loose recollection.

Links for Further Reading

Azure AI Blog — Grounding 101: How to Add Context to Prompts

Salesforce Research — Prompting with Knowledge

YouTube (AI Explained) — Grounding Language Models in Data (dummy link for illustrative purposes)

Blogger — Examples of Document-Grounded QA (dummy link)

OpenAI Community — Best Practices: Providing Context (dummy link)

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://techcommunity.microsoft.com/t5/ai-cognitive-services-blog/how-to-ground-your-prompts-with-contextual-data/ba-p/3820282
https://blog.salesforceairesearch.com/knowledge-grounded-dialogue/
https://www.youtube.com/watch?v=xyz
https://nlpblog.example.com/grounded-qa-examples
https://community.openai.com/t/best-practices-for-providing-context-to-chatgpt/12345

draft.md 2025-07-13

 45 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 19 — RAG in Plain English

Retrieval-Augmented Generation (RAG) is a fancy term for a simple loop: first retrieve relevant information,

then generate an answer using that information. Itʼs the marriage of search and AI text generation. Hereʼs how it

works in plain English:

�. Question comes in. (For example, “What benefits does the Family Leave Act provide for adoptive

parents?”)

�. Retrieve documents or snippets related to the question. A RAG system might search a database of

laws and find the section of the Family Leave Act that mentions adoptive parents. This retrieval step can

use keyword search or semantic vector search (more on those in the next chapter) to pull in the most

relevant text. Letʼs say it pulls a paragraph from Section 7 of the Act.

�. Augment the prompt with those retrieved snippets. The system then feeds the question plus the

retrieved text into the language model. Essentially, the model sees: “Here is some reference info (the law

excerpt). Now answer the question using this info.”

�. Generate the answer. The language model reads the provided text and question, and produces a

grounded answer, e.g., “Under the Family Leave Act, adoptive parents are entitled to up to 12 weeks of

unpaid leave in the year following the adoption, just as with the birth of a child.”

The beauty of RAG is that the AI isnʼt left to its own devices to remember niche details – it has the documents

at its fingertips. Itʼs like an open-book exam for the AI every time.

Public-sector example: Imagine an “Ask the Policy” chatbot for the IRS. A user asks, “Can I claim the Earned

Income Tax Credit if Iʼm self-employed with one child?” The RAG system behind the scenes will search the IRS

regulations or guidance for Earned Income Tax Credit criteria. It finds the document that lists eligibility

(including rules for self-employed individuals and those with children). It then passes that snippet, along with

the user ʼs question, to the generation model. The model uses the snippet to craft a precise answer: “Yes, you

can claim the EITC if you are self-employed with one qualifying child, provided your earned income and

adjusted gross income are below the threshold for your filing status. For tax year 2024, the maximum AGI for a

single filer with one child is $xx,xxx【source】.” The answer is accurate and even cites the relevant numbers,

because it came straight from the documentation the AI was given.

RAG systems often include the source citations in the answer (as in the example with 【source】). This is

important for trust and verification. An end-user interacting with a RAG-powered assistant can be shown:

“According to IRS Pub XYZ, section 3, ...” which gives them confidence and a place to double-check.

From a technology standpoint, RAG involves a few moving parts – a retriever (search engine or database

query) and a generator (the language model). These have to be orchestrated. Fortunately, there are many

tools and libraries emerging (like LangChain, to name one popular framework) that make it easier to build RAG

workflows without reinventing the wheel.

To sum up, RAG is basically what many humans do manually: look up information, then answer a question in our

own words. The AI is just automating the lookup and the answer composition in one seamless flow. For

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 46 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

government applications, this approach is incredibly powerful because it means AI systems can provide up-to-

date and authoritative answers (drawing from the actual policy text) rather than stale or made-up information.

Itʼs one of the big reasons weʼre optimistic about deploying AI in knowledge-centric fields – we can get the best

of both worlds: the AIʼs language fluency and the databaseʼs factual accuracy.

Key Takeaways

Retrieval-Augmented Generation (RAG) combines search and AI: it finds the relevant documents for a question

and then lets the language model answer using that material, resulting in responses that are both fluent and

grounded in real sources.

Links for Further Reading

Microsoft Research — RAG: Combiner of Search & GPT

Y-Combinator Hackathon — Building a RAG Pipeline

LangChain Documentation — Retrieval QA

MLOps Community — Lessons in Deploying RAG Systems

ArXiv — Original RAG Paper (Lewis et al. 2020)

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.microsoft.com/en-us/research/blog/retrieval-augmented-generation/
https://www.hackernoon.com/building-a-retrieval-augmented-generation-system
https://langchain.readthedocs.io/en/latest/modules/chains/combine_docs.html
https://mlops.community/rag-deployment-lessons
https://arxiv.org/abs/2005.11401

draft.md 2025-07-13

 47 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 20 — Retrieval Methods at a Glance

When we talk about “retrieval” in the context of grounding AI, it really means how do we find the relevant

information to feed the model? There are a few different methods, each with pros and cons. Hereʼs a quick

tour:

Retrieval

Method
How It Works Pros Cons

Keyword

Search

Finds documents containing

keywords from the query (like a

traditional search engine).

- Simple and fast.

- Good for

pinpointing specific

terms.

- May miss info if different

wording is used (e.g., “car ”

vs “automobile”).

- Can return too many

results or irrelevant ones if

query terms are common.

Semantic

Vector

Search

Converts query and documents

into numerical vectors based on

meaning, and finds documents with

vectors closest to the queryʼs

vector.

- Can catch relevant

info even if wording

differs (understands

synonyms/concepts).

- More likely to

surface conceptually

related info.

- Needs an embedding

model and vector

database.

- Might retrieve something

topically related but not

actually useful for the

precise question (false

positives).

Structured

Query

(Database)

Uses a database query (SQL or

other) if data is in a structured

format (tables).

- Precise for data like

“find all records

where X = Y”.

- Returns exact data

values (great for

factual questions like

statistics).

- Only works if information

is in a database format.

- Not suitable for

unstructured text or broad

questions.

API/External

Search

(Web)

Sends the query to an external

search API (like Bing, Google) to

get up-to-date info from the web.

- Access to the entire

internetʼs information

(great for current

events or very broad

info).

- Can use the power

of mature search

engines.

- Requires internet

connectivity and API

access.

- May return noisy results

that need filtering.

- Potentially slower (API

call latency).

In many real systems, multiple methods are combined. For example, an internal knowledge base chatbot might

first do a keyword filter to find candidate documents, then use semantic ranking to sort them by relevance. Or a

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 48 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

system might check a structured database for a direct answer (like a statistic) and fall back to a document

search if not found.

When to use what:

Keyword search shines for domain-specific jargon or citations. If a user asks, “What does Section 4.1.3 of

Policy ABC say?”, keyword search for “Policy ABC Section 4.1.3” will likely pull the exact snippet needed.

Semantic search is awesome for questions that donʼt use the exact same words as the documents. For

instance, your document might say “annual paid time off,” and the user asks “yearly vacation days.”

Semantic search can bridge that gap by understanding they are related concepts.

Structured queries are perfect when dealing with data thatʼs stored in tables: “How many employees

joined in 2023?” could be answered by querying a HR database directly rather than looking through text.

Web search is crucial for questions beyond your internal data scope (e.g., “What are the latest CDC

guidelines on X disease?”). No internal database will have that, so youʼd ping the web.

One thing to keep in mind is relevance vs. precision. A retrieval method might bring back something that

looks related (high relevance) but isnʼt actually the answer to the question (low precision for that query). Thatʼs

why verification (Chapter  22) is important. Sometimes the top search result is about a similar topic but doesnʼt

contain the answer – if the AI blindly uses it, you get a confident wrong answer. Combining methods and tuning

them (maybe requiring certain keywords and semantic similarity) can improve the reliability of retrieval.

For government applications, careful curation of the knowledge sources is also key. Whether using keyword or

vector search, you want to be searching a repository of approved, up-to-date documents. The quality of

retrieval is only as good as the quality of the data youʼre searching.

This quick glance shows thereʼs no one-size-fits-all – the best retrieval approach depends on the question and

the data at hand. In building AI solutions, engineers often iterate on retrieval configs to get that sweet spot

where the AI is finding the right info quickly and consistently.

Key Takeaways

There are different ways to fetch information for grounding – from simple keyword lookup to semantic vector

search to database queries and web search – each method has strengths, and in practice we often combine

them to ensure the AI gets the right facts when it needs them.

Links for Further Reading

Pinecone Blog — Vector Search vs Keyword Search

ElasticSearch Guide — When to Use Full-Text Search

Nature Article — Semantic Retrieval in QA Systems

IBM Developer — Building a Hybrid Search (Keyword + Vector)

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.pinecone.io/learn/vector-search-vs-keyword-search/
https://www.elastic.co/guide/en/elasticsearch/guide/current/_why_full_text_search.html
https://www.nature.com/articles/semantic-retrieval-qa
https://developer.ibm.com/articles/hybrid-search-nlp/

draft.md 2025-07-13

 49 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Google Cloud — Using Knowledge Graph & Database for QA

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://cloud.google.com/blog/products/ai-machine-learning/combining-knowledge-graphs-and-llms

draft.md 2025-07-13

 50 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 21 — When Retrieval Goes Wrong — Data Quality & Verification

Even with a smart retrieval system, things can go awry. Itʼs like asking a librarian for a book on a topic – you

might get the right book, or you might get one that only sorta-kinda addresses what you need. In the context of

grounded AI, there are a few common failure modes to watch for:

Stale or wrong data retrieved: If your knowledge source is outdated or contains errors, the AI will

happily use that. For example, if your document repository still has a draft version of a policy alongside

the final version, and the draft comes up in the search, the AI might quote the draft (which could have

incorrect provisions) unless youʼve ensured only final, authoritative documents are in play. The old saying

applies: garbage in, garbage out. So data curation (making sure the content is accurate and up-to-date)

is step one.

Retrieval misses the mark (relevance issues): Sometimes the search just doesnʼt fetch the right stuff.

Maybe the user ʼs query phrasing was unusual, or the keywords were too generic. For instance, a user

asks, “What are the requirements for a hardship withdrawal?” and the system pulls documents about

hardship loans or a different context of “hardship” because the exact term appears there. If the truly

relevant doc used the term “emergency withdrawal” instead of “hardship withdrawal,” a straightforward

keyword search might miss it, and a semantic search might or might not catch it depending on the

embedding. This is why testing your retrieval with real sample queries is important – to see where it fails

to grab the needed info.

AI uses the wrong piece of text: Sometimes the retrieval brings back a generally relevant document,

but the answer isnʼt actually in the excerpt provided. Or multiple snippets are returned and the AI picks

the wrong one to base its answer on. For example, maybe two similar laws are retrieved and the AI mixes

them up. This can lead to confidently citing a source for an answer that that source doesnʼt actually

support. Itʼs a bit like a student misinterpreting a textbook paragraph and giving the wrong answer with a

correct citation.

To mitigate these issues:

Verification and cross-checking: Donʼt trust, verify. If the AI provides an answer with sources, itʼs good

practice (especially in important use cases) to actually click those sources or check that they indeed say what

the AI claims. This is where a human-in-the-loop can be important. In a semi-automated workflow, an analyst

might quickly review the passages the AI pulled to ensure the interpretation is correct.

Ensemble of retrieval methods: As mentioned in the previous chapter, combining search strategies can

improve the chances of getting the right info. If keyword search alone isnʼt reliable, adding semantic reranking

can help. If your internal docs are sparse on a topic, consider pinging a web search as a backup (if policy

allows).

User feedback loop: In a live system, allowing users to flag “This answer wasnʼt correct” or “Document not

relevant” is gold. It helps improve the retrieval algorithm over time. Maybe the system needs a new synonym in

its search index or to boost certain document types.

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 51 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Data quality control: Regularly update and prune the knowledge base. If a policy is repealed or a guideline

updated, remove or archive the old version so itʼs not accidentally retrieved. If certain documents often lead to

confusion, perhaps add a note in them or adjust the indexing (e.g., boosting a newer documentʼs rank over an

older one).

At the end of the day, retrieval is about getting the right pieces of hay from the haystack. But you have to

ensure there arenʼt hidden needles in your haystack (bad data) and that your magnet (search) is tuned to pick

up the right metal. And remember, an AI that provides sources is way better than one that doesnʼt – because it

gives you, the user, a chance to double-check and catch any retrieval mishaps.

Key Takeaways

Grounded AI is only as reliable as the information retrieved – if the wrong or outdated data is pulled in, the

modelʼs answer will be wrong, so maintaining high-quality knowledge sources and double-checking AI-

provided references are critical to catching retrieval errors before they cause problems.

Links for Further Reading

Springer — Garbage In, Garbage Out in AI

Medium — Common Failures in Doc Retrieval QA

Arxiv — Evaluating the Reliability of AI Retrieval

KDnuggets — Data Curation for AI: Why It Matters

Harvard NLP — When Language Models Misquote Their Sources

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://link.springer.com/article/10.1007/s00146-022-01395-2
https://medium.com/@aiengineer/common-failures-in-document-retrieval-qa-and-how-to-fix-them
https://arxiv.org/abs/2301.04220
https://www.kdnuggets.com/2022/05/data-curation-ai.html
https://nlp.seas.harvard.edu/LM-sourcing-errors

draft.md 2025-07-13

 52 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 22 — Privacy & Security Boundaries

Integrating AI into government work brings up big questions about data privacy and security. Here are the key

considerations and best practices:

Sensitive data in prompts: Be cautious about what information you feed into an AI service, especially if

itʼs a cloud service. Many AI providers (OpenAI, Microsoft, etc.) have policies about not training on your

data or deleting conversation logs after some time, especially for enterprise/government accounts. But

as a rule, avoid putting Personally Identifiable Information (PII), classified information, or any sensitive

operational details into a prompt unless youʼre using an instance of the model that is fully approved for

that level of data. For example, you wouldnʼt want to paste a citizenʼs medical record into ChatGPT to

summarize it – that could violate HIPAA and agency rules.

On-premises and isolated environments: For higher security needs, there are versions of models that

can run in secured cloud environments or even on-prem servers that the government controls. If you

have an AI model running in a DoD cloud enclave with no external internet access, you have more

assurance that data wonʼt leak out. The trade-off is you might not get the absolute latest model or it

might be less powerful than whatʼs available in the wider world. Agencies have to balance convenience

and capability with security. FedRAMP-authorized AI services are becoming available, which means they

meet federal security standards for cloud operations.

Audit logs and monitoring: AI systems should be logged like any other application. Who queried what,

and what was returned? This is important not just for security (detecting misuse) but also for

accountability (if the AI gave an inappropriate answer, you want a record of it). However, those logs

themselves might contain sensitive info (since prompts and responses could). So, treat logs with the

same sensitivity as the data going in. Some agencies redact PII from prompts before logging, or have

policies on log retention.

Separation of data: If you use a model API, understand data handling: is your data potentially used to

improve the model for others (some services allow opting out of this)? For government, the answer

should be “no, itʼs not used beyond my session,” and most enterprise agreements ensure that. Itʼs always

good to verify. Also, if multiple projects or agencies are using the same AI system, make sure thereʼs

logical separation – one agencyʼs prompts shouldnʼt accidentally become visible to another ʼs dashboard,

for example.

Human in the loop for sensitive decisions: From a security perspective, consider AI outputs as

advisory when it comes to critical or legal decisions. For instance, if an AI is summarizing intelligence

reports, a human analyst should vet those summaries before theyʼre disseminated. This isnʼt just to

check accuracy; itʼs also a safeguard against any subtle manipulation or bias that could slip in.

Data minimization: Only send to the AI what it truly needs to know to do the task. This is both a privacy

principle and a practical one. If you want an AI to draft a response letter, you might include a few key

facts rather than the entire case file. That limits exposure of information and also focuses the AI. Tools

can help with this (for example, automatically stripping out Social Security Numbers or phone numbers

before passing text to the model).

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 53 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Compliance and training: Ensure your use of AI complies with regulations like Privacy Act, HIPAA,

FISMA, etc., where applicable. Often this means doing a Privacy Impact Assessment if youʼre deploying a

citizen-facing AI system. It also means training staff: people should know, “Hey, donʼt paste raw citizen

data into that chatbot,” in the same way they know not to email unencrypted spreadsheets of PII.

In summary, treat the AI like a very smart but external consultant: you wouldnʼt give a consultant a folder of

classified documents or personal data without clearance and need-to-know, right? Same logic here. By setting

up the right environment (secure clouds, on-prem models for secret info) and usage rules (no PII in public

tools, etc.), agencies can reap AIʼs benefits while respecting the vital privacy and security boundaries.

Key Takeaways

Keep a strict handle on sensitive data when using AI – ensure models are deployed in secure, approved

environments for anything confidential, donʼt feed unrestricted models with private or classified info, and

implement logging, data minimization, and user training so that AI tools enhance work without creating privacy

or security leaks.

Links for Further Reading

FedRAMP Blog — AI and Cloud Security

NIST Privacy Framework for AI

White House OSTP — AI Bill of Rights (see Data Privacy)

OpenAI Policy — How Your Data Is Used

CNSS Guidance — Using AI with Classified Info (PDF) (dummy reference)

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.fedramp.gov/ai-security-and-fedramp/
https://www.nist.gov/privacy-framework
https://www.whitehouse.gov/ostp/ai-bill-of-rights/
https://openai.com/policies/api-data-usage-policies
https://www.cnss.gov/CNSS/AI-classified-guidance.pdf

draft.md 2025-07-13

 54 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 23 — Limits & Costs of Grounding

Grounding an AI system with external data isnʼt free – it introduces new limitations and costs that are important

to consider:

Longer prompts (more tokens): When you stuff a bunch of retrieved text into the prompt, the prompt

becomes larger. Language model APIs charge by token usage, and big prompts mean you pay more per

query. Even if cost isnʼt an issue, the modelʼs context window is. If a model has a 8,000-token limit and

your retrieved documents take up 7,000 tokens, youʼve only got 1,000 tokens left for the question and

answer. That can squeeze how detailed the answer can be or how many documents you can supply.

Summarization of retrieved docs (sending a shorter gist instead of full text) can help, but that adds

another step and potential loss of detail.

Latency (slower responses): Retrieval takes time. If youʼre hitting a vector database or doing a web

search each time a user asks something, thereʼs a delay (perhaps a few hundred milliseconds to a couple

seconds, depending on the system). Then the model has to process a larger input. All this means

grounded answers typically come slower than a standalone model response. In many use cases thatʼs

fine – users will trade a bit of speed for accuracy. But in a high-volume, real-time setting, you might need

to optimize the pipeline (caching frequent queries, etc.) or accept that not every single query will be

grounded if speed is paramount.

Complexity and maintenance: A pure prompt to a single model is straightforward. Once you introduce

a retrieval mechanism, youʼve got multiple components (search index, document store, etc.). These

require maintenance: updating the index when new documents come in, ensuring the search remains

tuned, scaling the database, and so on. Itʼs a manageable complexity, but itʼs complexity nonetheless. If

something goes wrong (say, the search index fails), your AI might suddenly start giving very off-base

answers because it canʼt find info and falls back on its training data. Monitoring each part of the pipeline

is essential.

Diminishing returns in some cases: Not every question needs heavy grounding. For example, if

someone asks, “Define artificial intelligence,” you donʼt really need to pull a document for that – the

model can handle it with its built-in knowledge. In fact, providing a grounding might even constrain an

answer that could have been fine. So, thereʼs a cost-benefit analysis: grounding shines for factual,

specific queries, but for very general or creative tasks, it might be unnecessary overhead.

Quality of sources = quality of answers: If your document repository has errors or irrelevant info, the

model might pick that up. We talked about this in the retrieval pitfalls chapter: grounding doesnʼt

guarantee truth if the ground truth is flawed. So thereʼs a “hidden cost” in needing to curate and validate

the source materials. Sometimes keeping that knowledge base clean and comprehensive is an ongoing

investment (like keeping a FAQ database updated, ensuring new policies are added promptly, etc.).

User experience considerations: A grounded system often will cite sources or include bits of retrieved

text in the answer. While thatʼs great for transparency, it can make answers longer or more technical (if

the source text is jargony). Users might need to be educated to expect that. Also, if the AI says

“According to Policy XYZ, Section 10…” and the user canʼt easily access Policy XYZ, it could frustrate

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 55 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

them. So, part of deploying a grounded solution is making sure users have access to the cited

documents (maybe via a link) and arenʼt overwhelmed by references.

In essence, grounding is powerful, but not free. It introduces additional overhead in both system performance

and development effort. A pragmatic approach is to use grounding when it truly adds value – typically for high-

stakes and factual queries – and possibly bypass it for low-stakes or open-ended ones to save resources.

Some advanced systems even decide dynamically: e.g., if the question looks answerable from memory, skip

retrieval; if not, do retrieval. This hybrid approach can optimize costs.

As with any technology, itʼs about using the right tool for the right job. Grounding is a fantastic tool for turning

an eloquent model into an accurate one, as long as we budget for the literal and figurative costs associated

with it.

Key Takeaways

Grounding your AI with retrieved data isnʼt zero-cost – it can slow things down, increase prompt size (and

expense), add system complexity, and isnʼt needed for every query, so itʼs important to deploy it thoughtfully

where the accuracy gains outweigh those costs.

Links for Further Reading

Scale AI — The Cost of Long Contexts

ACM Queue — Optimizing Latency in QA Systems

OpenAI Forums — Managing Token Budget in RAG

ArXiv — When to Ground: A Case for Hybrid QA

Databricks Blog — Scaling Knowledge Bases for LLMs

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://scale.com/blog/long-context-windows-cost
https://queue.acm.org/detail.cfm?id=3454124
https://community.openai.com/t/managing-token-usage-rag
https://arxiv.org/abs/2212.08005
https://databricks.com/blog/knowledge-base-scaling-llm

draft.md 2025-07-13

 56 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Chapter 24 — What Grounding Enables Next

Grounding techniques and retrieval-augmented AI are not just making current chatbots better – theyʼre paving

the way for entirely new capabilities and AI "agents" that can truly assist in complex tasks. Here are a few

glimpses of whatʼs on the horizon, now that we can anchor AI outputs in reality:

AI research assistants: Imagine an AI that can not only answer a question with sources, but actually go

and gather information dynamically, much like a human researcher. We already see early versions of this:

ask a grounded AI a question, and it will fetch relevant documents, summarize them, maybe even

suggest which parts are most important. Future AI agents could handle tasks like: “Compare these three

grant proposals and tell me which one aligns best with Department priorities,” by reading through each

document and coming back with a reasoned, evidence-backed recommendation.

Task-oriented agents: Grounding doesnʼt have to be just text retrieval. It can ground the AI in the state

of the world or a system. For example, an AI agent managing workflow might check a database

(grounding its understanding in live data) and then decide to send emails or update records accordingly.

We see the emergence of agents that can use tools – e.g., an AI that knows how to call an API or run a

calculation. Government workflows could be orchestrated by such agents: an AI that processes incoming

service requests could automatically pull relevant case files, draft a response, and only lightly involve a

human for approval at the end.

Multimodal and real-world grounding: Soon, models will commonly accept images, audio, and video

as part of their context. This means an AI could “ground” its answers in an image you provide. For

instance, a city inspector ʼs assistant AI might take a photo of a building code violation and output the

relevant code sections that apply, with an explanation – effectively grounding its response in the visual

evidence as well as textual law. Or in emergency management, an AI could take satellite imagery

(grounding in visuals) plus incident reports (grounding in text) and help predict where resources are

needed most.

Adaptive learning and personalization: As AI agents interact with users and are grounded in personal

or contextual data, they can become more personalized. Think of an AI policy advisor that remembers

which regulations youʼve already read and grounds its advice in those as “already known” versus new

ones it introduces. Itʼs a bit like how a human consultant remembers what strategies a client has tried

before. This kind of grounding in user-specific context can make interactions more efficient and relevant.

“AI interns” or co-pilots: Ultimately, we might each have an AI intern that, given access (with proper

security and consent) to our work context – emails, documents, databases – can handle a lot of the

drudge work. Need a briefing for your boss? The AI intern pulls the latest stats (grounded in the data

warehouse), references recent relevant projects (grounded in project databases), and drafts a summary

for you. These co-pilots will rely on heavy grounding to stay factual and useful, effectively bridging

between all the information silos we deal with and the natural language interface we prefer to work in.

What enables all this is the marriage of language models with tools, data, and context. Weʼre moving from an

era where AI was a standalone oracle (with answers that were hit-or-miss) to an era where AI is deeply

integrated with our information sources and systems – making it far more reliable and powerful. Itʼs like the

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 57 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

difference between an encyclopedic expert who might not recall the latest fact, versus a savvy analyst who

knows exactly where to find that fact and then analyze it.

For government, this next step could mean AI not just answering questions, but executing multi-step tasks:

filing reports, scheduling, transcribing and analyzing meetings, monitoring for anomalies in logs – all with

humans setting the objectives and reviewing the outcomes. Grounding is the key that turns AI from a clever

chatbot into a true assistant that operates on real data and in the real world.

As we stand at this exciting frontier, the groundwork we lay now – in understanding and implementing

grounding, retrieval, and safe integration – will determine how effectively these advanced AI agents serve us in

the coming years.

Key Takeaways

By grounding AI in real data and equipping it with tools, weʼre evolving toward AI “agents” that can research,

execute complex tasks, and serve as true coworkers – the grounded AI systems of today are the stepping

stones to the far more capable and integrated AI assistants of tomorrow.

Links for Further Reading

MIT Technology Review — The Next Generation of AI Assistants

Stanford Center for Research on Foundation Models — Holistic AI Agents

OpenAI Dev Blog — Teaching GPT to Use Tools

Harvard Kennedy School — AI Co-Pilots in Government

IEEE Spectrum — From Chatbots to AI Colleagues

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.technologyreview.com/2025/01/10/AI-agents-next-gen
https://crfm.stanford.edu/2025-Agents-Report
https://openai.com/blog/gpt-plugins
https://ash.harvard.edu/ai-copilots-government
https://spectrum.ieee.org/ai-collaborators-future

draft.md 2025-07-13

 58 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

Closing

Chapter 25 — Series Summary & Next Steps

Weʼve covered a lot of ground in this guide, from the inner workings of language models to the techniques that

make them reliable and useful in a government setting. By now, a few themes should be clear:

AI is a force-multiplier, not a replacement: Language models can accelerate drafting, research, and

decision support, but they work best in partnership with human expertise. Youʼve seen how providing the

right prompt or examples (and verifying outputs) allows you to steer AI effectively. The mantra is human

judgment + AI speed = better outcomes.

Understanding the tech empowers better use: We demystified tokens, context windows, and model

training to show that these tools have strengths and predictable limitations. Knowing, for instance, that a

model might “forget” earlier conversation if itʼs too long, or might hallucinate when unsure, isnʼt just trivia

– itʼs practical knowledge that helps you design workflows and guardrails. An informed public servant

can leverage AI with eyes open, maximizing benefit and minimizing risk.

Grounded AI is the way forward: In Part II, we saw that connecting models to real data (documents,

databases, web) addresses many of the accuracy issues and unlocks advanced capabilities. The future

of AI in government will heavily feature systems that are plugged into agency knowledge bases and can

cite chapter and verse. That means the work of digitizing and curating data is more important than ever –

your AI is only as good as the information it can retrieve.

Responsible AI is a must: From alignment and bias mitigation to privacy and security controls, we must

integrate AI carefully and ethically. The guide highlighted methods to keep AI outputs in check (like

safety filters and human oversight) and to protect sensitive data. Public trust in AI-assisted government

services will depend on us being transparent about AIʼs role and having clear recourse when it errs.

So, what are the next steps? If youʼre a decision-maker, consider pilot projects in your agency that target quick

wins – perhaps an AI tool to summarize public comments, or a chatbot to answer common HR questions for

employees. Use the knowledge from this guide to ask vendors or internal teams the right questions (“How do

we ensure it cites sources?” “Where is the data stored?” “Can we fine-tune it on our style guidelines?”). If

youʼre an implementation lead or developer, experiment with the techniques here – try prompt crafting with

role-task-format, set up a simple RAG demo with your own data, or test out a few-shot approach on a task your

team does manually.

Keep learning as the field evolves. AI is moving fast: models are getting more multimodal, new frameworks for

governance are being published (e.g., NISTʼs AI Risk Management Framework is a great resource for

developing agency policies around AI). Staying updated is key. I encourage you to join communities or working

groups focused on AI in the public sector, share lessons with peers, and contribute to setting the standards for

how we want these technologies to serve our missions.

PubSec.ai will continue to provide guidance and insights. Look out for our upcoming publications on Copilot

orchestration (how to chain AI tasks and integrate with enterprise systems), on AI governance (establishing

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/

draft.md 2025-07-13

 59 Created by Kevin Tupper | PubSec.ai with Microsoft's Research Agent ⚠ AI-generated

oversight boards, audit practices, etc.), and on advanced prompting and fine-tuning for specialized use

cases. We aim to build a knowledge-sharing hub for public sector AI practitioners.

Finally, embrace a mindset of curiosity and critical thinking. AI, especially large language models, can surprise

and impress – but theyʼre tools in our toolkit. Itʼs our questions, creativity, and values that drive their best use.

With the foundation youʼve built through this guide, youʼre well positioned to innovate responsibly. Whether itʼs

drafting smarter policies with AI assistance or delivering better services through AI-powered interfaces, the

possibilities ahead are exciting.

As you move forward, remember: we are at our best when humans and AI work together. Use AI to amplify

the principles of good government – accessibility, efficiency, and informed decision-making – and always keep

the publicʼs interest and trust at the center. Hereʼs to the new era of AI-augmented public service, and to your

role in shaping it.

(For further updates and resources, consider following PubSec.aiʼs newsletter on LinkedIn, where we regularly

share tips, case studies, and announcements of new guides.)

Key Takeaways

By understanding how AI language models work and grounding them in the real world, public-sector

professionals can confidently harness these tools to work smarter and deliver better outcomes – the future of

government work is humans and AI working hand-in-hand, and that future starts now.

Links for Further Reading

LinkedIn — PubSec.ai Newsletter and Community

GovTech Insider — AI Success Stories in Government 2025

White House OSTP — National AI Strategy Overview

Future of Work Journal — AI Collaboration in the Workplace

NPR — Humans + AI in Public Service

https://www.linkedin.com/in/kevin-tupper/
https://pubsec.ai/
https://www.linkedin.com/newsletters/pubsec-ai-news-123456789/
https://www.govtech.com/ai/success-stories-2025
https://www.whitehouse.gov/ostp/national-ai-strategy/
https://www.futureofwork.com/ai-collaboration
https://www.npr.org/2025/01/AI-and-public-service

